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The problem of rarefied gas flow into vacuum through a short circular pipe is studied numerically by
solving the Boltzmann kinetic equation. Comparison of the results obtained with the exact and S-model
collision integrals is presented across a large range of Knudsen numbers. Computed values of mass flow
rate are also compared against the DSMC results and experimental data from existing literature.
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A rarefied gas flow through a finite-length circular pipe with the
constant cross sectional area is a popular problem in the rarefied
gas dynamics [1e3]. Computational results for the complete
geometrical setup with pipe and both reservoirs include Direct
Simulation Monte Carlo (DSMC) studies [4,5] and deterministic
calculations on the basis of the Boltzmann kinetic equation with
model collision integrals [6e11]. A recent comparison of compu-
tational results with experimental data for the short tube with the
length to radius ratio L/R ¼ 1 can be found in Ref. [12].

The aim of this short communication is to compare different
computational approaches for the particular case of the short pipe
L/R ¼ 1 and gas flow into vacuum. These approaches are the direct
numerical solution of the Boltzmann kinetic equation with the
exact collision integral and S-model collision integral [13,14]. The
results of the kinetic studies are evaluated against the DSMC data
[4] and experimental measurements [15]. The emphasis is to obtain
well-resolved (converged) data on the basis of the kinetic equations
in order to establish the relative accuracy of approaches. The work
therefore complement the earlier review publication [12] and
contributes to the proposed set of benchmark problem results.
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Let us introduce a Cartesian coordinate system (x,y,z) with the
origin located in the centre of the middle section of the pipe the Oz
axes directed along the tube. A steady three-dimensional state of
the rarefied gas is determined by the velocity distribution function
f(x,x), where x ¼ (x,y,z) is the spatial coordinate, x ¼ (xx,xy,xz) is the
molecular velocity vector. For the rest of the paper, the non-
dimensional formulation is used, in which the spatial coordinates
x, mean velocity u ¼ (u1,u2,u3), number density n, temperature T,
heat flux vector q¼ (q1,q2,q3), viscosity m and distribution function f
are scaled using the following quantities:

R; b; n1; T1; mn1b
3
; m1 ¼ mðT1Þ; n1b

�3
; (1)

where n1 ¼ p1/kT1 is the number density in the left reservoir, m is
the mass of a molecule, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT1=m

p
is the most probable speed,

k is the Boltzmann constant. The degree of gas rarefaction is
described by the so-called rarefaction parameter d1, which is
inversely proportional to the Knudsen number:

d1 ¼ Rp1
m1b

Below, the non-dimensional variables are denoted by the same
letters as the dimensional ones. The distribution function f is
assumed to satisfy the Boltzmann kinetic equation

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:aristov@ccas.ru
mailto:shakhov@ccas.ru
mailto:titarev@ccas.ru
mailto:vladimirot@yandex.ru
mailto:serge@ccas.ru
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vacuum.2013.11.003&domain=pdf
www.sciencedirect.com/science/journal/0042207X
http://www.elsevier.com/locate/vacuum
http://dx.doi.org/10.1016/j.vacuum.2013.11.003
http://dx.doi.org/10.1016/j.vacuum.2013.11.003
http://dx.doi.org/10.1016/j.vacuum.2013.11.003


V.V. Aristov et al. / Vacuum 103 (2014) 5e86
xx
vf
vx

þ xy
vf
vy

þ xz
vf
vz

¼ d1Iðf ; f Þ (2)

Here I(f,f) is the collision integral. The expression for the exact
Boltzmann collision integral can be found in various references, e.g.
Refs. [16,17], and is omitted here for the sake of brevity. For the S-
model equation [13,14] the function I(f,f) takes the following non-
dimensional form:

Iðf ; f Þ ¼ p
m

�
f ðSÞ � f

�
; f ðSÞ ¼ fM

�
1þ 4

5 ð1� PrÞSaca
�
c2 � 5

2

��
;

fM ¼ n
ðpTÞ3=2 expð�cacaÞ; Si ¼ 2qi

nT3=2; vi ¼ xi � ui; ci ¼ viffiffiffi
T

p

(3)

Here summation over repeated Greek indices is assumed. For a
monatomic gas the Prandtl number Pr ¼ 2/3.

The non-dimensional macroscopic quantities are defined as the
integrals of the velocity distribution function with respect to the
molecular velocity:

�
n;nu;n

�3
2 T þ u2

�
; q

� ¼
Z �

1; x; x2;
1
2
vv2

�
fdx;

u2 ¼ uaua; v2 ¼ vava; x2 ¼ xaxa; p ¼ nT :

(4)

The kinetic Equation (3) has to be augmentedwith the boundary
conditions on the pipe and reservoir walls. On the surface of the
pipe the condition of diffuse molecular scattering on the pipe
surface with complete thermal accommodation to the non-
Fig. 1. The finest spatial mesh 245 thousan
dimensional surface temperature T1 h 1 is assumed. The density
of reflected molecules nw is found from the impermeability con-
dition stating that the mass flux through the walls is equal to zero.
The same condition is used for the parts of the reservoir walls
directly adjacent to the pipe; these are located at z ¼ �L/2. At the
rest of the reservoir walls the distribution function of the molecules
moving into the flow domain is specified as the locally Maxwellian
one, with the parameters corresponding to the equilibrium values
in each of the reservoirs.

The Boltzmann equation with the exact collision integral is
solved using the Unified Flow Solver (UFS) [18e20]. The solution
procedure consists of a second-order total variation diminishing
(TVD) scheme on a semi-structured Cartesian grid with local mesh
adaptation near pipe surface. The collision integral is evaluated
with the Korobov’s nodes on the equidistant Cartesian velocity grid.
The calculations with the UFS solver are run on a quarter of the
domain taking into account a symmetry relatively two orthogonal
planes crossing the axis of the symmetry of the channel. In themost
detailed computations the domain in physical space was a paral-
lelepiped with sizes 20 � 20 � 40 units, a minimal cell size is
approximately 0.01 in the direction normal to the pipe surface. A
sequence of three spatial meshes is considered: 4.8, 32 & 245
thousand spatial cells for quarter of the domain. Graphical illus-
tration of the finest spatial mesh can be found in Fig. 1.

The S-model kinetic Equation (3) is solved using an implicit
time-marching algorithm conservative with the respect to the
model collison integral. A summary of the numerical method and
the corresponding computer program “Nesvetay 3D” can be found
d spatial cells used for the UFS solver.
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in Refs. [21], see also Refs. [22,9,23] and references therein. In the
present study the most accurate locally one-dimensional TVD
scheme implemented in the solver is employed.

The computational setup andmost of the results for the S-model
equation are taken fromRef. [23]. Reservoirs of length and radius 10
are used and a sequence of three spatial meshes (5.6, 41 & 350
thousand spatial cells) is considered. The complete geometry of the
problem (whole pipe and reservoirs) is discretized. The non-
uniform velocity mesh consisted of 25 � 16 � 32 nodes with the
extended domain size�4� xz� 4. It can be stated that for the range
of d1 values used in the present work the accuracy of calculations
for the S-model kinetic equation is within 1%. Further details can be
found in Ref. [23].

Overall, the computational effort to solve the exact Boltzmann
equation is at least 10 times larger as compared to the S-model
kinetic equation. The difference is due to the higher complexity of
the exact collision integral and as well as different time evolution
methods. The “Nesvetay 3D” employs an implicit temporal dis-
cretization method allowing to run with large time step as
compared to the explicit method in the UFS solver.

It should also be noted that two sets of calculations use differ-
ently sized spatial domains, which needs to be taken into account
while comparing spatial resolution and spatial cell count.

For large-scale problems such as the ones reported here the
calculations are carried out on modern high-performance clusters
using Message Passing Interface (MPI). The calculations for “Nes-
vetay 3D” code are run on the high-performance computer
“Lomonosov” of Lomonosov Moscow State University, Russia, using
up to 128 cores of the machine. The UFS solver runs were executed
on the MVS100K machine of the Joint Supercomputer Centre of the
Russian Academy of Sciences (JSCC RAS) using 1000 cores.

The main computed quantity is the mass flow rate _M through
the pipe. In the presentation of the results, it is more convenient to
use the so-called reduced mass flow rate Q, which is defined as a
ratio of the mass flow rate _M at given value of the rarefaction
parameter d1 and L/R1 to its values M0 in the free-molecular orifice
flow [24,5]. In the non-dimensional variables Q is calculated as

Q ¼
_M
_M0

; M ¼
Z

AðzÞ
rðx; y; zÞwðx; y; zÞdxdy; _M0 ¼

ffiffiffi
p

p
2

: (5)

For the free-molecular case d1 ¼ 0 the solution can be obtained
using the integral equation of Clausing [25]. There are a number of
numerical solutions of this equation obtained by other authors af-
terwards as well as statistical solutions; for discussions see e.g. Ref.
[16]. For L/R¼ 1 and p2¼ 0 the free-molecular value of the flow rate
is Qfm ¼ 0.672.

Table 1 contains the present numerical results, previous kinetic
studies [6], DSMC data from Ref. [4] and experimental data from
Ref. [15]. The numerical results cover the range 0 � d1 � 100, cor-
responding to flow regimes from the free-molecular one to the
Table 1
Mesh convergence studies for the reduced flow rate Q defined in Equation (5). Mesh
resolution: for the BKE (i), (ii), (iii) correspond to 4.8, 32 & 245 thousand spatial cells
for quarter of the domain; for the S-model e 5.6, 41 & 350 thousands cell for the
whole domain.

d1 Exact BKE S-model, Ref. [23] DSMC, Exp. Data,

(i) (ii) (iii) (i) (ii) (iii) Ref. [4] Ref. [15]

0. 0.690 0.679 0.674 0.666 0.670 0.672
0.1 0.700 0.689 0.683 0.678 0.683 0.684 0.680 0.675
1. 0.767 0.762 0.756 0.758 0.766 0.768 0.754 0.743
10. 1.007 1.048 1.058 1.035 1.061 1.066 1.062 1.06
100. 1.211 1.322 1.358 1.290 1.351 1.367 1.358 1.33
nearly continuum. It is seen that the free-molecular and nearly free-
molecular solutions are computed by “Nesvetay 3D” solver with
high accuracy even on the coarsest mesh. The UFS package over-
estimates the flow rate quite significantly on coarsest meshes, but
converges as the spatial mesh is refined. For the medium and large
values of d1 both solvers converge to the resolved value of the flow
rate from below. It should be noted that the overall discrepancy of
all three computational set of data (BKE, S-model and DSMC) at the
nearly continuum regime d1 ¼100 is below 1%, which is within the
computational error of simulations. The slightly larger flow rate
value obtained by “Nesvetay 3D” solver can be explained by the
generally higher-accuracy of its body-fitted spatial mesh and
second-order accurate TVD advection scheme. The deviation of the
S-model equation from the DSMC data is around 2% for d1 ¼ 1 and
well below 1% for other values of the rarefaction parameter. The
results of the BKE solver are close to the DSMC data from Ref. [4] for
all d1 values.

Fig. 2 shows the axial distributions of density, temperature and
axial velocity for d1 ¼1 and both the BKE and S-model equations. In
order to improve the resolution of low-pressure region, a finer
velocity mesh is used for this particular calculation by both codes.
The solution is not sensitive to the spatial mesh for this value of the
rarefaction parameter. Unlike the case of a longer pipe L/R � 10, in
which the pressure profile becomes convex [7,11], the axial distri-
bution of pressure remains almost linear inside the pipe for all
values of d1. The temperature profile exhibits a typical behaviour,
similar to that of the source flow. Namely, temperature drops as
z/N. Overall, there is a good agreement between solutions inside
the pipe and its whereas some differences exist in velocity and
temperature profiles downstream in the vacuum region, which can
be due to both difference in the governing equations as well as
accuracy of calculations for such a low pressure.

In conclusion, it can be stated that for the considered problem
the use of the S-model kinetic equation provides good accuracy
across all flow regimes as compared to the DSMC and BKE solutions.
The largest discrepancy in the mass flow rate occurs in the rarefied
regime d1 ¼1 and is below 2%. The computational cost to solve the
S-model equation by “Nesvetay 3D” is significantly lower than that
of the Unified Flow Solver for the Boltzmann equation with the
exact collision integral. Future work will include the assessment of
the relative accuracy of kinetic equations and corresponding
solvers on more demanding flow problems.
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Fig. 2. Axial distributions of flow variables for d1 ¼ 1. The pipe corresponds
to �1/2 � z � 1/2.
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