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a b s t r a c t

A method to take into account the influence of the inlet/outlet ends on rarefied gas flows through
moderately long capillaries proposed previously [Vacuum 97, 26 (2013)] is applied to gas flows through
circular tubes. The method is based on the concept of effective tube length, representing a sum of its real
length and an increment. To calculate the length increment, a flow field near the inlet/outlet of tube is
calculated on the basis of the linearized kinetic equation. It is shown that the value of the length
increment is independent of the tube length, but depends only on the rarefaction parameter so that it can
be used to obtain accurate predictions of the mass flow rate and the axial pressure distribution without
great computational effort. Comparisons with results obtained by considering the complete flow domain
have shown the efficiency of the end correction concept.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Most works concerning rarefied gas flows through long capil-
laries are considered on the basis of linearized kinetic theory for
fully developed flow conditions, see e.g. Refs. [1e5]. Such an
assumption is justifiedwhen the capillary is sufficiently long and the
end effects can be neglected. In this case, rarefied gas flow is one-
dimensional so that the kinetic equation is significantly simplified
and solved with modest computational effort. However, in practical
problems of rarefied gas flows through tubes, the end effect may
cause a strong deviation from the one-dimensional behavior and
hence must be taken into account. In this case, the kinetic equation
in its two (or three) dimensional form is solved, see e.g. Refs. [6e11],
or the direct simulation Monte Carlo (DSMC) technique is applied,
see e.g. Refs. [12e14]. A comparison between the results for flows
through short channels obtained by the direct solution of kinetic
equations and the DSMCmethod showed very good agreement [15].
However, both approaches are computationally expensive and
impractical, particularly in the case of moderately long capillaries.
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Under some conditions, the end corrections may be taken into
account by the techniques proposed by the authors previously [16]
employing the concept of the effective length [6,2,17e19]. Using an
example of gas flow between parallel plates of finite length it was
shown that the mass flow rate can be calculated without CPU-time
consuming simulations. The condition when the method provides
an accuracy of 1% was pointed out in Ref. [16]. The main idea of the
effective length concept lies in the consideration of gas flow at the
inlet/outlet part of capillary separately from its middle part, where
the flow is fully developed. Thus, the kinetic equation is solved near
the inlet/outlet of the capillary using fully developed flow as a
boundary condition. Furthermore, the effective length values can
be tabulated as a function of the rarefaction parameter for future
applications.

The objective of the present work is to calculate the length
increment for rarefied gas flow through a cylindrical tube using the
methodology proposed in Ref. [16] to quantify the influence of the
end effects. These data can be used to extend the method of
calculation of flow rate through a long tube under arbitrary pres-
sure drop [2,20] to shorter tubes. Even though the approach is
based on the linearized kinetic equation, it is shown here that the
obtained data can be used for non-linear flows caused by large
pressure drops. Such an approach can be easily integrated into
practical tools for rarefied gas flows, providing complete solutions
for pressure distributions in realistic pipe networks within a few
minutes [21].
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Fig. 1. Flow domain and coordinates.
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2. Statement of the problem

Consider a rarefied gas flow at the outlet (or inlet) of a tube and
in a container adjacent to the tube as is shown in Fig.1. Since the gas
flow is axisymmetric, it is reasonable to use a cylindrical coordinate
system (x,r) with the origin at the center of the junction between
the container and tube. Thus, the region x > 0 represents the
container, while the region x � 0 corresponds to the tube. The gas
flows from (or into) the long tube in the x direction into (or from)
the infinitely large container, where it is maintained at pressure P0
and temperature T0 far from the tube inlet/outlet. Hereinafter, the
coordinates (x,r), tube length L and length increment DL will be
expressed in units of the tube radius R.

It is assumed that inside the tube (x < 0), a constant pressure
gradient x is maintained far from the channel entrance, i.e.

x ¼ ð1=P0ÞðvP=vxÞ ¼ const at x/�N: (1)

The sign of x determines the flow direction: if x is positive the
gas flows from the container into the tube. Otherwise, the flow
direction is opposite. We assume the pressure gradient to be suf-
ficiently small, i.e. jxj � 1, to linearize the kinetic equation.

The expected distribution of pressure along the symmetry axis is
shown qualitatively in Fig. 2 under the condition x < 0. The real
pressure P decreaseswith a constant gradient inside the tube far from
the outlet, i.e. at x<�L1, then its shape is changed at the area around
x ¼ 0 and, finally, it gradually tends to the outlet pressure value P0.
The reference pressure PR is also depicted in Fig. 2. Its gradient is
constant inside the tube (�L1 � x � 0) and equal to that of the real
pressure far from the outlet, while the pressure PR is kept equal to the
outlet pressure P0 in the container (x � 0), i.e. it is given as

PRðxÞ ¼
�

P0 at x � 0;
P0ð1þ xxÞ at x < 0: (2)

The pressure difference DP ¼ P � PR in the tube far from the
outlet (x � �L1) is expected to approach a constant value. It
Fig. 2. Pressure distribution and reference pressure in the outlet region.
represents the pressure jump due to the end effect, which can be
taken into account by adding the increment DL to the tube length.
As was shown in our previous paper [16], the length increment is
related to the pressure jump as

DL ¼ �DP=ðxP0Þ: (3)

3. Input equations

In order to consider an arbitrary gas rarefaction, the problem is
solved on the level of velocity distribution function f(x,r,c), which
for the problem in question depends on the two coordinates in the
physical space, viz., longitudinal x and radial r. The molecular ve-
locity c has the three components: longitudinal cx, radial cr, and
azimuthal c4. Since the pressure gradients x is small, the distribu-
tion function is linearized using x as the small parameter, i.e.

f ðx; r; cÞ ¼ fR½1þ hðx; r; cÞx�; (4)

where fR is the reference Maxwellian defined as

fRðx; cÞ ¼ nRðxÞ
p3=2v30

e�c2 ; nRðxÞ ¼ PRðxÞ=kBT0 (5)

Here v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT0=m

p
is the most probable molecular velocity,

kB is the Boltzmann constant, T0 is the equilibrium temperature, m
is the molecular mass, nR is the reference number density having
the same profile as that of the reference pressure (2). Themolecular
velocity c is measured in the units of v0.

It is convenient to use the cylindrical coordinates for the mo-
lecular velocity, i.e. the radial cr and azimuthal c4 components of
the molecular velocity are presented as

cr ¼ cpcos q; c4 ¼ cpsin q: (6)

Then the linearized BGK kinetic equation [22] reads

cr
vh
vr

� c4
r
vh
vq

þ cx
vh
vx

þ dh ¼ d

�
rþ 2c$uþ s

�
c2 � 3

2

��
þ gðx; cxÞ;

(7)

where the axial symmetry of the gas flow has been taken into ac-
count. The source function g is determined by the reference num-
ber density nR and given as

gðx; cxÞ ¼ � cx
xn0

vnR
vx

¼
�

0 at x � 0;
�cx at x < 0; (8)

where Eqs. (2) and (5) have been used. The quantities r, u, and s
represent the density perturbation, dimensionless bulk velocity
and temperature perturbation, i.e.

rðx; rÞ ¼ nðx; rÞ � nR
nRx

; (9)

uðx; rÞ ¼ buðx; rÞ
y0x

: (10)

sðx; rÞ ¼ Tðx; rÞ � T0
T0x

; (11)

respectively. Here bu is the dimensional bulk velocity. These quan-
tities are calculated via the perturbation function as
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rðx; rÞ ¼ 1
ZN ZN Z2p

e�c2x�c2phc dq dc dc ; (12)

p3=2

�N 0 0

p p x

urðx; rÞ ¼ 1
p3=2

ZN
�N

ZN
0

Z2p
0

e�c2x�c2phc2pcos q dq dcp dcx; (13)

uxðx; rÞ ¼ 1
p3=2

ZN
�N

ZN
0

Z2p
0

e�c2x�c2phcxcpdq dcp dcx; (14)

sðx; rÞ ¼ 1
p3=2

ZN
�N

ZN
0

Z2p
0

e�c2x�c2ph
�
2
3
c2 � 1

�
cpdq dcp dcx: (15)

Note, the azimuthal component of the bulk velocity vanishes
because of the axial symmetry of the flow.

The rarefaction parameter d determining the solution of Eq. (7)
is defined as

d ¼ RP0=m0y0; (16)

where m0 is the gas viscosity at the equilibrium temperature T0. The
quantity l¼ m0v0/P0 is the equivalent free path of molecules and the
rarefaction parameter is inversely proportional to the Knudsen
number. Therefore, the cases d / 0 and d / N correspond to the
free molecular and hydrodynamic limits, respectively.

The integro-differential equations (7), (12)e(15) require a
boundary condition for particles entering in the computational
domain. According to Fig. 1, the surfaces Ⓕ and Ⓒ are solid and
diffuse scattering can be assumed. Mathematically, this means that
the perturbation function h of the reflected particles does not
depend on the molecular velocity and may be found from the
impermeability condition, i.e. ur ¼ 0 on surface Ⓕ and ux ¼ 0 on
surface Ⓒ. On the free surfaces Ⓓ and Ⓔ, the incoming molecules
correspond to the equilibrium distribution and therefore the
perturbation function h is zero. The particles entering through the
soft surface Ⓐ have the perturbation

hA
�
r;cx;cp;q

	 ¼ rð�L1;rÞþh1
�
r;cx;cp;q

	
; at x ¼ �L1 and cx >0;

(17)

where h1(r,cx,cp,q) corresponds to the one-dimensional flow
obeying the following BGK equation

cr
vh1
vr

� c4
r
vh1
vq

þ dh1 ¼ 2dcxux � cx: (18)

This equation is subject to the diffuse reflection at the tube wall,
i.e. h1 ¼ 0 at r ¼ 1 and cr < 0. Details on the numerical procedure to
solve such an equation are given in Ref. [23]. Equation (18) is solved
once at the beginning of the numerical solution and h1 is stored in
order to be used at each iteration solving Eq. (7). The surface Ⓑ

represents the symmetry axis, i.e. the perturbation function h does
not depend on the angle q at r ¼ 0. This property is used for the
boundary condition at the surface Ⓑ.

Once the kinetic equation (7) is solved, the moments r, u and s
are calculated by Eqs. (12)e(15). The length increment DL is given
by the density asymptotic value far from the tube-container junc-
tion and inside the tube, i.e.
DL ¼ lim
x/�N

rðx; rÞ; (19)

which follows from Eqs. (1)e(3), (5), and (9), and the state equation
P ¼ nkBT. Note, the limit function r should not depend on the radial
coordinate r in this position.

4. Numerical scheme

The numerical scheme described in Ref. [10] with some im-
provements has been applied here. The main discretization char-
acteristics are similar to those found in previously formulated
discrete velocity schemes [10]. The continuum spectrum of the
molecular velocity magnitudes cp is discretized to M values ac-
cording to the roots of theMth order Legendre polynomial mapped
in [0,cp,max], while the molecular velocity angle q is represented by
Nq values uniformly distributed in the range [0,2p]. In the physical
space, the perturbation function h and its moments r, u, s are dis-
cretized to Nx � Nr points according to a second-order scheme. The
improvements applied in Ref. [10] regarding memory management
and parallelization are also applied here to ensure efficient usage of
computational resources. The moments (12)e(15) are calculated by
employing GausseLegendre quadrature for the velocity magni-
tudes cp and cx and the trapezoidal rule for the angle q.

The solution algorithm consists of the following steps:

1. The macroscopic quantities r, u and s are initially set equal to
zero.

2. The fully developed flow problem (18) is solved in order to be
used as the boundary condition for Eq. (7) with the same value
of d.

3. Incoming distributions in cross-section Ⓐ are estimated from
Eq. (17) with cx > 0. The value of r(�L1,r) found in the previous
iteration (or the one initially assumed) is used.

4. The discretized form of the kinetic equation (7) is solved using a
marching scheme.

5. The current iteration is completed by calculating new values for
the macroscopic quantities through Eqs. (12)e(15).

6. Steps 3e5 are repeated by updating each time the macroscopic
quantities until they have converged, satisfying a pre-
determined convergence criterion.

The whole process is also repeated for different sizes L1, L0 of the
computational domain to ensure that their further increase does
not change the results with the adopted accuracy. This is evaluated
by checking the convergence of the quantities of interest (mostly
the pressure perturbation). Upon convergence the quantity
r(�L1,r), which is very important for the purposes of the present
work, should not depend on r and be constant as we approach the
interface boundary Ⓐ.

The iteration scheme is completed when all macroscopic
quantities have converged. In our calculations, the average residual
per node has been defined as

residual ¼ 1
4Ntotal

XNtotal

i¼1

h

ri � rpri


þ 

si � spri



þ 


ux;i � uprx;i





þ



ur;i � uprr;i




i;
(20)

where the pr superscript denotes the corresponding quantities in
the previous iteration and Ntotal is the total number of nodes. An
analysis has been performed for the numerical parameters through
several runs, resulting in the values given in Table 1 in order to
obtain grid independent results. Finally, the computational domain



Table 1
Numerical parameters used in the simulations.

Parameters Values

Nodes/unit length in dense areas (Nx ¼ Nr) 150e200
Discrete angles (Nq) in (0,2p) 300e400
Discrete magnitudes M for cx and cp 16
Max. value of velocity magnitude (cmax) 5
Convergence criterion 10�9

Fig. 3. Pressure distribution along the tube.
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size parameters (L1,L0) are given in Table 2. An increase of the length
L1 is neededwhen the rarefaction parameter is decreased, while the
opposite occurs for the reservoir size L0. These values were initially
selected on the basis of the corresponding parameterization study
for the plane geometry [16]. It has been confirmed that they are also
sufficient for the tube, given that a smaller L1 length is required in
this case.
5. Effective length increment and corrected flow rate

In order to demonstrate the use of the length increment, let us
consider gas flow through a sufficiently long tube of length L
measured in radius units connecting two containers. The origin of
the longitudinal coordinate X, also measured in radius units, is fixed
at the inlet cross section of the tube. The mass flow rate _M through
a long cylindrical tube can be expressed via the Poiseuille coeffi-
cient GP [2] as

_M ¼ �GP

�
pR2=v0

�
ðdP=dXÞ; (21)

where GP(d) is a function of the local rarefaction parameter d(X)
calculated by (16) based on the local pressure P(X), i.e.

dðXÞ ¼ RPðXÞ=ðm0v0Þ: (22)

Numerical data on these coefficients can be found in many
previously published papers reviewed in Ref. [2]. Here, we will use
the values reported in Ref. [1] based on the BGK model. The global
Poiseuille coefficient G [20] is defined via the pressures Pin and Pout
of the gas at the inlet and outlet containers, respectively

_M ¼ G
h
pR2ðPin � PoutÞ=v0L

i
; (23)

and determined by the inlet din and outlet dout rarefaction param-
eters, and by the dimensionless length L, i.e. G ¼ G(din,dout,L). Note,
din and dout are calculated by Eq. (16) using Pin and Pout, respectively.
Combining Eqs. (1), (21), (23) and (22), the following relation is
obtained
Table 2
Poiseuille coefficient GP, length increment DL and computational domain sizes L1, L0
vs rarefaction parameter d.

d GP, [1] DL L1 L0

0.1 1.4043 1.52 60 10
0.2 1.3820 1.33 60 10
0.4 1.3796 1.16 50 10
0.6 1.3982 1.07 50 10
0.8 1.4261 1.01 40 12
1 1.4594 0.964 40 12
2 1.6608 0.841 30 12
4 2.1188 0.735 30 15
6 2.5999 0.704 20 15
8 3.0894 0.688 20 15
10 3.5821 0.682 20 15
N 0.681a

a Hydrodynamic limit, Ref. [24].
GdX ¼ �½L=ðdin � doutÞ�G PðdÞdd: (24)

The expected pressure distribution P(X) along the tube and in
the containers is depicted in Fig. 3 which shows that the pressures
at the inlet (X ¼ 0) and outlet (X ¼ L) cross sections are not equal to
Pin and Pout, respectively. Pressures jumps occur at these positions
due to the end effects, which can be taken into account by the
length increments, i.e. the pressures Pin and Pout may be taken to
correspond to the points X ¼ �DLin and X ¼ L þ DLout, respectively.
Thus, the integration of the right-hand-side of Eq. (24) from dout to
din corresponds to the integration of the left side from L þ DLout
to �DLin with respect to X. Then, the relation of G(din,Gout,L) to GP(d)
is obtained as

Gðdin; dout; LÞ ¼ L
ðLþ DLin þ DLoutÞðdin � doutÞ

Zdin
dout

G PðdÞdd:

(25)

In the particular case of the small pressure difference, i.e.
ðPin � PoutÞ � Pin, the rarefaction parameters din and dout are equal
to each other and then Eq. (25) is reduced to

Gðd; LÞ ¼ L
Lþ 2DL

G PðdÞ; (26)

where d¼ din ¼ dout and DL¼ DLin ¼ DLout. In fact, Eqs. (25) and (26)
are the same as those obtained in our previous work [16] for a plane
channel, but the values of GP, DLin and DLout are different.

When the flow rate G is known, the pressure distribution is
calculated by integrating Eq. (24) from X ¼ �DLin up to an arbitrary
X. Then using the relation (22) we obtain the function X ¼ X(P) in
the form

X ¼ L
ðPin � PoutÞG

ZP
Pin

G P

�
din
Pin

P
�
dP � DLin (27)

which is inverted into P ¼ P(X). In the particular case of small
pressure difference, the pressure distribution is linear

PðXÞ ¼ Pin þ X þ DL
Lþ 2DL

ðPin � PoutÞ: (28)



Fig. 4. Density perturbation profile along the symmetry axis r ¼ 0: solid lines e nu-
merical solution, dotted lines e limit value.

Fig. 5. Density perturbation distributions and streamlines: (a) d ¼ 0.2, (b) d ¼ 1, (c)
d ¼ 10.
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6. Results and discussion

Based on this methodology, the effective length increment DL
has been calculated as a function of the rarefaction parameter d. As
has been shown above (Eq. (19)), the length increment DL is a limit
value of the density perturbation r which should be constant far
from the tube end. This characteristic is verified in Fig. 4 where the
density perturbation along the symmetry axis (r ¼ 0) is shown for
d¼ 0.2, 1 and 10. It is seen that as x/�L1, the density perturbation
r indeed approaches to a constant value. Near the tube outlet
(x ¼ 0), the perturbation r drastically drops and then vanishes at
x / L0.

The same quantity and streamlines are plotted in Fig. 5 in two-
dimensional contours for the area close to x ¼ 0 and the same
values of d. Inside the tube (x < 0), the density field progressively
becomes one-dimensional, i.e. r is constant in each cross section
and the streamlines are parallel far from x ¼ 0 inside the tube.

The values of the length increment DL are presented in Table 2
for various values of d covering a wide range of the gas rarefac-
tion. It is observed that the values of DL are monotonically
decreased by increasing d. Such a behavior indicates that the end
effect is more significant for highly rarefied flows. These results are
qualitatively similar to those obtained previously for the plane
geometry [16]. In the hydrodynamic limit (d/N), the incrementDL
tends to the value 0.681 obtained from the NaviereStokes equation
in Ref. [24]. In the opposite limit, i.e. d/ 0, the length increment DL
tends to infinity. The numerical data for the small values of d indi-
cate the following asymptotic behavior of the increment

DL ¼ 0:9� 0:27ln d at d/0: (29)

A comparison between the results obtained by the present
approach with those based on the consideration of the complete
flow field without any decomposition [8e11] and used here as the
benchmark solution will allow us to test the accuracy and limita-
tions of the end correction approach in the whole range of the gas
rarefaction. The dimensionless flow rate G in case of small pressure
drop, calculated by Eq. (26) employing the results for GP and DL
from Table 2 is presented in Table 3 for several values of the rare-
faction parameter d and aspect ratio L. The data obtained by
considering the complete domain of the flow [10] are also given in
this Table for comparison. Note, the results reported in Ref. [9] are
in a good agreement with those from Ref. [10]. The relative differ-
enceDG/G between Eq. (26) and the exact results [10] is given in the
fifth column of Table 3. The quantity 2DL/L characterizing the
contribution of the end effect into the whole resistance of tube is
given in the last column of the same Table. It can be seen that for a
rather long tube, i.e. L � 5, the end correction approach provides
practically the same results as those obtained exactly. It is rather
surprising that the approach works also for the short tubes, i.e.
L ¼ 1 and 2, in the transitional (d ¼ 1) and hydrodynamic (d ¼ 10)
regimes even when the length increment is larger than the tube
length, i.e. 2DL/L > 1. Only near the free-molecular regime (d ¼ 0.1)
and for short tube (L � 2) the approach error reaches 11%.

When the pressure drop in the tube ends is large, i.e. Pin [ Pout,
then Eq. (25) containing two values of the length increment, viz.
DLout and DLin should be used. Numerical values of the coefficient G
calculated from Eq. (25) for some combinations of L, din and Pout/Pin
are given in Table 4. The values of G calculated directly considering
the whole flow domain in Ref. [11] are also given in the same Table.
It should be noted that the complete domain results [11] were
obtained from the ES kinetic model [25]. However, a comparison of
these results with those based on the BGK model showed that the
difference does not exceed 2.6%. The relative difference DG/G be-
tween the end correction approach and exact calculation is given in



Table 3
Dimensionless flow rate G for small pressure difference obtained by Eq. (26) and that
calculated considering the complete flow domain in Ref. [10], relative differences
DG/G between these results and end correction 2DL/L vs the tube length L and gas
rarefaction d.

L d G DG/G 2DL/L

Eq. (26) Ref. [10]

1 0.1 0.348 0.393 0.11 3.04
1 0.498 0.503 0.01 1.93
2 0.619 0.621 0.00 1.68

10 1.52 1.48 �0.02 1.36
2 0.1 0.557 0.598 0.07 1.52

1 0.743 0.745 0.00 0.96
2 0.902 0.902 0.00 0.84

10 2.13 2.099 �0.01 0.68
5 0.1 0.873 0.891 0.02 0.61

1 1.05 1.05 0.00 0.39
2 1.24 1.24 0.00 0.34

10 2.81 2.79 0.01 0.27
10 0.1 1.08 1.08 0.01 0.30

1 1.22 1.22 0.00 0.19
2 1.42 1.42 0.00 0.17

10 3.15 3.13 0.01 0.14
20 0.1 1.22 1.22 0.00 0.15

1 1.33 1.33 0.00 0.10
2 1.53 1.53 0.00 0.08

10 3.35 3.34 0.00 0.07

Table 4
Dimensionless flow rate G for large pressure drop obtained by Eq. (25) and that
calculated considering the whole flow domain in Ref. [11], relative differences DG/G
between these results and the total end correction DLtot/L (DLtot ¼ DLin þ DLout) vs
the tube length L, gas rarefaction d and pressure ratio Pout/Pin.

L din Pout/Pin G DG/G DLtot/L

Eq. (25) Ref. [11]

5 1 0.1 0.94 0.98 0.04 0.50
5 2 0.1 1.04 1.07 0.02 0.43
5 10 0.1 1.87 1.68 0.11 0.33
5 1 0.5 1.01 1.03 0.01 0.42
5 2 0.5 1.16 1.17 0.01 0.36
5 10 0.5 2.32 2.25 0.03 0.28
10 1 0.1 1.13 1.16 0.03 0.25
10 2 0.1 1.23 1.25 0.02 0.22
10 10 0.1 2.13 2.06 0.04 0.16
10 1 0.5 1.19 1.20 0.01 0.21
10 2 0.5 1.33 1.34 0.01 0.18
10 10 0.5 2.60 2.58 0.01 0.14
20 1 0.5 1.30 1.31 0.01 0.10
20 10 0.5 2.77 2.77 0.00 0.07

Fig. 6. Pressure distribution along the symmetry axis at L ¼ 5 and Pout/Pin ¼ 0.5: solid
line e solution for the complete flow domain [11], dashed line e solution obtained by
Eq. (27); (a) d ¼ 1, (b) d ¼ 10.
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the sixth column of Table 4. The contribution of the end effect
(DLin þ DLout)/L into the resistance of the tube is given in the last
column of the same Table. It can be seen that for a large pressure
drop the method proposed here also works well. The maximum
difference between the end correction approach and the exact
calculation is 11% at L ¼ 5, din ¼ 10 and Pout/Pin ¼ 0.1 that can be
explained by the existance of shock waves in the downflow
container under these conditions [13]. For all other combinations,
the difference does not exceed 4% even when the contribution of
the end effect is about 50%. It is noted that such a comparison is not
possible in the case of expansion into vacuum (Pout ¼ dout ¼ 0) since
the development length L1 in this case is infinite according to
Eq. (29).

The numerical results [9,10] for the complete domain of the flow
due to a small pressure drop confirm the linear pressure distribu-
tion (Eq. (28)). It is more interesting to compare the pressure dis-
tribution when its drop is large, e.g. Pout/Pin ¼ 0.5. In this case, the
distributions P(X) were calculated by Eq. (27) for the length L ¼ 5
and for the rarefaction parameter d ¼ 1 and 10. The results are
plotted in Fig. 6 and compared with those obtained in Ref. [11] by
considering the complete flow domain. It can be seen that the
distribution P(X) is practically linear and in a good agreement with
the exact results for d ¼ 1. The pressure profile P(X) is slightly
different from the straight line for d¼ 10. In this case, the difference
between Eq. (27) and the exact distribution is larger, but the
approximate approach still provides reasonable results.

Based on the results presented in Tables 2e4, some general re-
marks on the applicability range of the end correction approach are
drawn which may be considered as guidelines for engineering
purposes. Compared to the case of no end effect consideration, the
introduction of the end effect correction will always improve the
accuracy of the simulations. Since its implementation is very sim-
ple, it is recommended to apply the end correction in the whole
range of gas rarefaction d and for any pressure ratio Pout/Pin when
the ratio of the end correction length over the tube length is larger
than 0.01 (DL/L > 0.01). Of course, for small pressure differences
with L � 1 and for large pressure differences with L � 5 the intro-
duced error may be significant (over 10%) and it is recommended to
apply the DSMC method or the direct solution of a kinetic equation
in the whole domain of the gas flow in order to obtain accurate
results. The above statements define approximately the upper and
lower length limits of a tube of moderate length.
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7. Conclusions

Themethod to take into account the influence of the inlet/outlet
ends on rarefied gas flows through moderately long capillaries
proposed previously in Ref. [16] has been applied to gas flows
through circular tubes. According to the method, the effective tube
length represents a sum of its real length and an increment related
to the flow field near the inlet/outlet of tube. Such an approach
allows us to calculate the flow rate and flow field through circular
tubes with modest computational effort. Numerical results of the
length increments based on the BGK model equation and diffuse
gasesurface interaction have been obtained for several values of
the gas rarefaction. Comparisons with results obtained by including
the whole flow domain have shown the efficiency of the end
correction concept. It has been shown that the end correction
method works well even for relatively short tubes. The effective
length increment values given here can be used in practical appli-
cations with minimal computational effort.
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