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The paper is devoted to the study of a rarefied gas flow through a finite length conical pipe into vacuum.
The problem is solved in the complete geometrical setup, which included not only the pipe, but also
high- and low-pressure reservoirs. The analysis is based on the direct numerical solution of the Boltz-
mann kinetic equation with the S-model collision integral in three space dimensions. The method of the
solution is based on the recent implicit total variation diminishing (TVD) method on unstructured spatial
meshes. It is conservative with respect to the collision integral and work across all flow regimes. The
results are provided for various ratios of the outlet and inlet diameters, pipe’s lengths and Knudsen
numbers. The computed flow rates are compared with the case of the circular pipe of constant radius as
well as an approximate method for very long pipes. The influence of the pipe geometry on the flow field
is also examined. The presented results can be used as a benchmark for calculations by other methods
and codes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A rarefied gas flow through a finite-length pipe or capillary into
vacuum is a popular problem in the rarefied gas dynamics [1,2]. The
majority of the computational studies deal with the flow through a
circular pipe with the constant cross sectional area. Examples
include the Direct Simulation Monte Carlo (DSMC) studies for short
tubes [3] and deterministic studies for short, moderate and long
pipes [4e6]. A comparison of the results from different approaches
with experimental data for the short tube can be found in [7].

It is important that all cited studies analyse the problem in the
complete setup, which includes not only the pipe, but also high and
lower pressure reservoirs, rather than a simplified formulation, in
which the reservoirs are replaced by the evaporation and/or
condensation boundary conditions at the pipe’s ends [8,9]. It ap-
pears that the such a setup, albeit in the planar case, was first
considered in [10,11]. The influence of the geometrical setup on the
flow rate for circular pipe flow was investigated in detail in [5,6].

However, there seem to be no results in the literature for the
rarefied gas flow into vacuum through a conical pipe. If one is only
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interested in the mass flow rate and density distribution along the
axial line of the pipe, an approximate method [12,13] can be used.
However, it is valid for very long pipes only, for which the ratio of
both inlet and outlet radii to the length is small. Moreover, the
analysis presented in [4e6] shows that for small Knudsen numbers
this condition along is not enough and that the product of the
Knudsen number and the pipe length has to be large for the
approximate method to be applicable.

The present work is devoted to the deterministic kinetic study of
the rarefied gas flow into vacuum through moderate and long
conical pipes and can thus be viewed as a continuation of [4e6].
The results are based on the numerical solution of the S-model
kinetic equation [14e16] using the recent three-dimensional finite-
volume method [17,18]. The computations are carried out for
various length and outlet to inlet diameter ratios across the range of
rarefaction conditions from the free-molecular to nearly continuum
flow regimes. Numerical results for the mass flow rate and distri-
bution of macroscopic macroparameters are presented in the broad
range of Knudsen numbers, pipe’s length and outlet to inlet radii
ratios. The influence of the pipe geometry on the flow rate and
distribution of macroscopic quantities is examined.

2. Formulation of the problem

The formulation of the problem is an extension of [3e6].
Consider a rarefied gas flow through a conical pipe of length L,
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connecting two infinitely large reservoirs (volumes) filled with the
same monatomic gas. The inlet and outlet radii of the pipe are
denoted as aR1, R2, respectively. The gas in the left reservoir is kept
under pressure p1 and temperature T1, whereas in the right reser-
voir the pressure is p2 is so low that it can be regarded as equal to
zero. It is assumed that reservoirs’ volumes are significantly larger
than the pipe volume and the gas is in equilibrium far away from
the ends of the latter. The real form and size of the reservoirs are
thus of no importance. The complete accommodation of mo-
mentum and energy of molecules occurs at the pipe surface, which
is kept under the same constant temperature T1.

Let us introduce a Cartesian coordinate system (x,y,z) with the
centre located in the centre of the inlet section of the pipe
x ¼ y ¼ z ¼ 0 and the Oz axes directed along the tube. A steady
three-dimensional state of the rarefied gas is determined by the
velocity distribution function f(x,x), where x¼(x,y,z) is the spatial
coordinate, x¼(xx,xy,xz) is the molecular velocity vector. For the rest
of the paper, the non-dimensional formulation is used, inwhich the
spatial coordinates x, mean velocity u ¼ (u1,u2,u3) ¼ (ux,uy,uz),
number density n, temperature T, heat flux vector q ¼ (q1,q2,q3),
viscosity m and distribution function f are scaled using the following
quantities:

R1; b; n1; T1; mn1b
3
; m1 ¼ mðT1Þ; n1b

�3
; (1)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT1=m

p
; n1 ¼ p1/kT1 is the number density in the left

reservoir;m is the mass of a molecule, k is the Boltzmann constant.
Below, the non-dimensional variables are denoted by the same
letters as the dimensional ones.

The distribution function f is assumed to satisfy the S-model
kinetic equation [14e16], which in the non-dimensional variables
takes the form

xx
vf
vx þ xy

vf
vy þ xz

vf
vz ¼ n

�
f ðSÞ � f

�
; n ¼ nT

m d1; d1 ¼ R1p1
m1b

;

f ðSÞ ¼ fM
�
1þ 4

5 ð1� PrÞSaca
�
c2 � 5

2

��
; fM ¼ n

ðpTÞ3=2 exp
��c2

�
;

vi ¼ xi � ui; ci ¼ viffiffiffi
T

p ; Si ¼ 2qi
nT3=2; c2 ¼ caca:

(2)

Here d1 is the so-called rarefaction parameter, which is inversely
proportional to the Knudsen number. Summation over repeated
Greek indices is assumed. For a monatomic gas the Prandtl number
Pr ¼ 2/3. The non-dimensional macroscopic quantities are defined
as the integrals of the velocity distribution function with respect to
the molecular velocity:

�
n;nu;n

�3
2 T þ u2

�
; q

� ¼
Z �

1; x; x2;
1
2
vv2

�
fdx;

u2 ¼ uaua; v2 ¼ vava; x2 ¼ xaxa; p ¼ nT :

(3)

The kinetic equation (2) has to be augmented with the boundary
conditions on the pipe and reservoir walls. Let n ¼ (nx,ny,ny) be the
unit normal vector to a boundary surface, pointing inside the flow
domain. The condition of diffuse molecular scattering on the pipe
surface with complete thermal accommodation to the non-
dimensional surface temperature T1h1 is given by:

f ðx; xÞ ¼ fw ¼ nw

ðpÞ3=2 exp
	
�x2



; xn ¼ ðx;nÞ > 0: (4)

The density of reflected molecules nw is found from the imper-
meability condition stating that the mass flux through the walls is
equal to zero:
nw ¼ Ni=Nr; Ni ¼�
Z

xn<0

xnfdx; Nr ¼
Z

xn>0

xn
1

ðpÞ3=2
exp

	
�x2



dx:

(5)

The same condition (5) is used for the parts of the reservoir
walls directly adjacent to the pipe; these are located at z ¼ 0,L. At
the rest of the reservoir wall the distribution function of the
incoming molecules xn > 0 is specified as

f ¼ f1 ¼ n1

ðpÞ3=2 exp
	
�x2



; z � 0;

f ¼ 0; z � L:
(6)

The boundary condition (6) is essentially an evaporation
boundary condition for the molecules entering the flow domain
and is meant to model the indefinitely large reservoirs.

The main computed characteristic of the flow is the mass flow
rate M, which in the non-dimensional variables is given by an in-
tegral over the cross section:

_M ¼
Z

AðzÞ
rðx; y; zÞuzðx; y; zÞdxdy: (7)

Here A(z) is the cross-sectional area at the position z along the
pipe. Note, that mass flow rate _M is constant along the pipe.
3. Details of the calculations

3.1. Method of solution

The formulated problem possesses the cylindrical symmetry
and can thus be solved in the cylindrical coordinate system. How-
ever, our experience suggests that the direct three-dimensional
solution methods are more accurate and efficient than the ap-
proaches based on the axisymmetrical formulations. In the present
work the steady-state solution of the problem is found by means of
an implicit time-marching algorithm for the kinetic equation (2) in
the non-stationary form. The numerical method consists of the
high-order accurate advection scheme applicable to hybrid un-
structured meshes, conservative procedure for the calculation of
the model collision integral and one-step implicit time evolution
for fast steady-state convergence. As a result, it allows efficient
calculation of rarefied flows in the wide range of degrees of rare-
faction in arbitrary geometries.

A summary of the numerical method can be found in [18], see
also [17,19] and references therein. The infinite domain of integra-
tion in the molecular velocity space is replaced by a finite compu-
tational domain. The velocity distribution function is then defined
in centres of the resulting velocity mesh. The kinetic equation (2) is
replaced by a system of time-dependent advection equations; each
equation corresponds to a specific point from the velocity mesh.
The macroscopic quantities at any spatial location are computed in
such a way as to satisfy not only conservation laws, but also correct
relaxation of the heat flux vector. Assuming the model collision
integral is known, the equations are solved using an implicit TVD
method, which is second-order accurate in space. An LU-SGS type
time evolution procedure on unstructured meshes [20] is used to
allow for faster steady-state convergence.

For large-scale problems such as the ones reported here the
calculations are carried out on modern high-performance clusters
using Message Passing Interface (MPI). In the present work the HPC
”Lomonosov” of Lomonosov Moscow State University, Russia, was
utilized. The runs were performed on up to 160 cores of the



Fig. 1. Crossectional views of the spatial mesh; L/R1 ¼ 50, R2/R1 ¼ 10, 116 thousands
cells.

Table 2
Flow rate Q for L/R1 ¼ 1 and various R2/R1 ratios.

d1 R2/R1 ¼ 1 1.1 2 5

Ref. [3] Present Present Present Present

0. 0.311 0.309 0.350 0.644 0.958
0.1 0.312 0.313 0.354 0.655 0.976
1. 0.334 0.339 0.386 0.734 1.098
5. 0.436 0.439 0.505 0.973 1.338
10. 0.543 0.544 0.615 1.133 1.437
20. 0.695 0.693 0.774 1.290 1.496
30. 0.792 0.874 1.358 1.522
50. 0.917 0.916 0.992 1.417 1.537
100 1.068 1.071 1.127 1.464 1.545
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machine (40 CPUs) depending on the mesh resolution, pipe length,
R2/R1 ratio and the value of the rarefaction parameter d1.
3.2. Choice of spatial and velocity meshes

Special attention was given to the accuracy of calculations,
which for the fixed second-order TVD discretization scheme is
influenced by the spatial and velocity mesh resolutions and domain
sizes. The solution of the problem for three considered length to
radius ratios L/R1 and many values of the rarefaction parameter
d requires a huge amount of six-dimensional calculations. It is thus
impossible to carry out a detailed convergence study in the six-
dimensional space (x,x) in order to determine the optimal resolu-
tion of spatial and velocity meshes. Instead a limited number of
convergence runs is performed for a carefully selected set of con-
ditions, and the estimatedmesh resolutions and sizes are then used
for the main bulk of calculations.

All calculations are run on purely hexahedral spatial meshes.
The definition of the parameters of the spatial mesh begins with the
estimation of the required size of the reservoirs. The use of small
domains for reservoirs decreases the computational effort required
to obtain the solution, but may lead to the underestimation of the
mass flow rates. In particular, the spatial domain modelling the
high-pressure reservoir must be sufficiently large. It was found that
Table 1
Flow rate Q for L/R1 ¼ 1 and various R2/R1 ratios.

d1 R2/R1 ¼ 1 1.1 2

Ref. [3] Ref. [4] Present Present Present

0. 0.672 0.670 0.671 0.742 0.976
0.1 0.680 0.681 0.683 0.757 0.996
1. 0.754 0.758 0.766 0.851 1.123
5. 0.948 0.949 0.953 1.055 1.352
10. 1.062 1.058 1.061 1.175 1.438
20. 1.168 1.161 1.164 1.280 1.489
30. 1.220 1.332 1.507
50. 1.287 1.281 1.282 1.390 1.518
100 1.358 1.355 1.352 1.448 1.522
for the accurate calculation of the mass flow rate the use of the
reservoir 1 of dimensions 10 units length and 10 units radius is
adequate formost of the cases. For R2/R1�5 the size of the reservoir
1 is increased to be the cylinder of 15 units length and radius. The
size of the reservoir 2 is less important as the flow becomes su-
personic. In order to calculate the flow pattern in the vacuum re-
gion the radius of the reservoir 2 is set to R2 þ 15.R2 þ 20 units
whereas the length is 5e10 units.

The distribution function in the problem in hand is discontin-
uous and varies sharply in the certain areas of the flow. To resolve
sharp gradients, the spatial mesh is clustered towards the pipe
surface as well as inlet and outlet surfaces. The cell size normal to
the inlet and outlet positions was usually equal to hi,o ¼ 0.03.0.05
units. The mesh resolution normal to the surface varied linearly
with the radius of the pipe as hn(z) ¼ 0.03,R(z), where R(z) is the
pipe radius at the position 0 � z � L. The total number of spatial
cells varies depending on the R2/R1 ratio and is at the level of 90e
110 thousands. A typical spatial mesh for L/R1 ¼50 and R2/R1 ¼10 is
shown on Fig. 1.

The integration domain in the velocity space was a cylinder, see
Fig. 8 of [19]. In this work it is of radius 4 and length 8, with the axis
coinciding with the pipe’s axis. The cylindrical velocity mesh con-
sisted of 25 cells in the radial direction, 16 cells in the angular di-
rection and 20.40 cells in the z direction. The radial component of
the mesh was clustered towards the origin. The velocity mesh
resolution for mass flow rate calculations can be deemed sufficient
because the most difficult case of the free-molecular flow d1 ¼ 0 is
computed accurately.

The numerical solution is considered converged to the steady
state once the residual in the integral conservation laws drops
several orders of magnitude and the time derivative of the flow rate
becomes negligible. Calculations show that it is muchmore difficult
to obtain a formal steady-state convergence of the solution for the
conical geometry as compared to the case of the cylindrical pipe. It
should also be noted that in all calculations the deviation of the
Table 3
Flow rate Q for L/R1 ¼ 10 and various R2/R1 ratios.

d1 R2/R1 ¼ 1 1.1 2 5 10

Ref. [3] Ref. [4,6] Present Present Present Present Present

0. 0.192 0.190 0.190 0.216 0.436 0.833 0.977
0.1 0.190 0.190 0.191 0.217 0.441 0.845 1.000
1. 0.198 0.199 0.201 0.230 0.483 0.957 1.121
5. 0.258 0.258 0.261 0.302 0.657 1.212 1.359
10. 0.335 0.335 0.335 0.390 0.839 1.347 1.445
20. 0.463 0.462 0.462 0.537 1.076 1.445 1.502
30. 0.559 0.649 1.202 1.481 1.527
50. 0.696 0.697 0.697 0.804 1.329 1.504 1.540
100 0.874 0.888 0.889 1.010 1.432 1.533 1.547



Table 4
Flow rate Q for L/R1 ¼ 20 and various R2/R1 ratios.

d1 R2/R1 ¼ 1 1.1 2 5 10

Ref. [4,6] Present Present Present Present Present

0. 0.108 0.108 0.124 0.264 0.611 0.859
0.1 0.107 0.108 0.123 0.265 0.620 0.876
1. 0.110 0.111 0.127 0.281 0.692 0.987
5. 0.144 0.143 0.166 0.385 0.932 1.234
10. 0.187 0.188 0.220 0.517 1.132 1.365
20. 0.272 0.272 0.320 0.743 1.315 1.453
30. 0.347 0.408 0.907 1.388 1.486
50. 0.469 0.469 0.550 1.110 1.450 1.512
100 0.667 0.667 0.773 1.317 1.498 1.530

Table 6
Comparison of flow rate Mp and approximation (11) for R2/R1 ¼ 1.1, 2.

R2/R1 ¼ 1.1 R2/R1 ¼ 2

d1 L/R1 ¼ 10 20 50 Eq. (11) L/R1 ¼ 10 20 50 Eq. (11)

0. 1.217 1.393 1.533 1.734 2.446 2.974 3.424 4.013
0.1 1.226 1.390 1.521 1.659 2.477 2.985 3.406 3.823
1. 1.295 1.431 1.537 1.637 2.712 3.174 3.501 3.801
10. 2.196 2.475 2.654 2.804 4.715 5.837 6.575 7.110
100 5.698 8.723 12.62 16.31 8.086 14.85 27.88 45.49
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mass flow rate value _M from constant value is small and does not
exceed 1.5% for the most difficult case R2/R1 ¼ 10. By default, the
value of _M corresponding to the middle section of the pipe is used
in the presentation of results.
4. Results

4.1. Flow rate

The solution of the problem depends on the rarefaction
parameter d1, the length to the inlet radius ratio L/R1 as well as
outlet to inlet radii ratio R2/R1. The calculations are run for the
length to radius ratios L/R1 ¼ 1, 5, 10, 20, 50 and various values of
outlet to inlet ratios R2/R1 ¼1, 1.1, 2, 5 and 10. In all cases the radius
of the outlet is such that R2/L � 1. The rarefaction parameter values
varied in the range 0 � d1 �100 and covered the flow regimes from
the free-molecular to nearly-hydrodynamic one.

In the presentation of the results, the reduced mass flow rate Q
is used instead of the conventional mass flow rate [8,3]. The value of
Q is defined as the ratio of the mass flow rate _M at given d1, L/R1 and
R2/R1 to the value _M0 corresponding to the free-molecular flow
through the orifice of radius R1:

Q ¼
_M
_M0

; _M0 ¼
ffiffiffi
p

p
2

: (8)

Tables 1e5 contain the data on the reduced flow rate Q as a
function of all flow parameters: d1, L/R1, R2/R1. For the case of con-
stant cross sectional area also included are the DSMC values from
Ref. [3] as well as earlier deterministic calculations [4,6] on a finer
spatial mesh. There is a generally good agreement between all three
sets of results for R2/R1 ¼ 1 with the discrepancy well within the
computational error of calculations. It should also be noted that
accurate DSMC calculations of the monatomic gas flow may be
considered as equivalent to the direct solution of the Boltzmann
Table 5
Flow rate Q for L/R1 ¼ 50 and various R2/R1 ratios.

d1 R2/R1 ¼ 1 1.1 2 5 10

Ref. [4,6] Present Present Present Present Present

0. 0.047 0.047 0.054 0.121 0.331 0.568
0.1 0.046 0.047 0.054 0.121 0.334 0.576
1. 0.047 0.047 0.055 0.124 0.355 0.638
5. 0.060 0.060 0.071 0.169 0.497 0.871
10. 0.079 0.080 0.094 0.233 0.673 1.080
20. 0.119 0.120 0.141 0.360 0.944 1.281
30. 0.158 0.187 0.477 1.110 1.363
50. 0.228 0.230 0.273 0.674 1.275 1.431
100 0.379 0.378 0.447 0.990 1.408 1.484
kinetic equation with the exact collision integral. The S-model ki-
netic equation is only an approximation to the latter equation,
devised to be exact for the free-molecular flow d1 ¼ 0 and very
accurate for continuum regime d1 [ 1. In case of intermediate
values of the Knudsen number a certain (usually small) discrepancy
between exact and model equations is expected, which should be
taken into consideration while analysing the results, presented in
Tables 1e5.

The flow rate increases as the outlet radius grows. For the small
change in the outlet radius (R2/R1 ¼1.1 or 10%) for any value of the
rarefaction parameter d1 in the considered range the values of flow
rate Q can be computed from the circular pipe data:

QðR2=R1 ¼ 1:1; d1Þz1:15$QðR2=R1 ¼ 1; d1Þ (9)

which can be considered as a linear dependence on dR ¼ R2/R1�1.
However, for larger difference in radii R2/R1 � 2 the flow rate de-
parture from the circular pipe is nonlinear and cannot be described
by a fixed multiplication coefficient. The growth of the flow rate
with the increase of the outlet radius is explained by fact that
diverging surface of the conical pipe poses smaller resistance to the
flow as compared to the circular pipe. It is expected that the further
increase in R2/R1 ratio will result in even larger flow rate values. The
upper limit is provided by the orifice flow.
4.2. Comparison with the approximate method

The computed values of the flow rate can be used to assess the
accuracy of the approximate method [12,13] for the case of conical
pipes. For the constant cross section circular pipe such an analysis
was carried out in [4e6]. It was shown that the approximate
method is restricted to the flow regimes satisfying the condition
d1(R1/L) � 1.

Consider another reduced flow rate:

Mp ¼ 2
A

1
Kp

_M; Kp ¼ p1
L
; (10)

where A is cross sectional area of the inlet section of the pipe, Kp can
be regarded as the mean pressure gradient. The approximate
method [12,13] assumes that at any position along the pipe the flow
rate can be approximated by its value in the linearized problem of
Table 7
Comparison of flow rate Mp and approximation (11) for R2/R1 ¼ 5, 10.

R2/R1 ¼ 5 R2/R1 ¼ 10

d1 L/R1 ¼ 10 20 50 Eq. (11) L/R1 ¼ 10 20 50 Eq. (11)

0. 4.789 6.890 9.331 12.547 5.54 9.69 16.01 27.42
0.1 4.789 6.998 9.380 11.916 5.64 9.88 16.24 26.02
1. 5.402 7.798 10.02 11.912 6.35 11.14 17.99 26.03
10. 7.601 12.78 19.00 23.646 8.18 15.40 30.45 52.30
100 8.650 16.90 39.72 159.19 8.73 17.26 41.88 355.09



Fig. 2. Distribution of non-dimensional macroscopic quantities along the axial line for L/R1 ¼ 10 and d1 ¼ 1. (a) Density (b) z component of velocity (c) pressure (d) temperature.

Fig. 3. Distribution of non-dimensional macroscopic quantities along the axial line for L/R1 ¼ 10 and d1 ¼ 100. (a) Density (b) z component of velocity (c) pressure (d) temperature.



Fig. 4. Comparison of axial distributions of non-dimensional density and pressure for L/R1 ¼ 10, R2/R1 ¼ 2. (a) d1 ¼ 1 (b) d1 ¼ 100.

V.A. Titarev et al. / Vacuum 101 (2014) 10e17 15
gas flow in the infinitely long pipe. It is essential that the linearized
solution is taken at the local value of the rarefaction parameter. In
the case of the pressure-driven flow through a conical pipe the
following approximate equation connects the flow rateMp with the
pressure gradient along the pipe [13]

Mp ¼ � L
p1

	
rðxÞ
R1


3
GpðdðzÞÞ dpðzÞdz ;

rðzÞ ¼ R1 þ ðR2 � R1Þ zL; dðzÞ ¼ d1
pðzÞrðzÞ
p1R1

:

(11)

HereGp(d) is the flow rate for the case of the infinite pipe, see e.g.
Ref. [2]. In the present work equation (11) is solved numerically
Fig. 5. Radial distribution of non-dimensional temperature for vari

Fig. 6. Radial distribution of non-dimensional temperature for vario
using a second-order accurate marching method starting from the
high-pressure reservoir. The sought approximate flow rate Mp is
found from the condition that the computed pressure at x ¼ L be
equal to the right reservoir pressure p2 ¼ 0.

Tables 6 and 7 show the comparison between the direct solution
of the problemwith the approximation (11) for L/R1 ¼10, 20 and 50.
It is seen that there is visible discrepancy between the results even in
the most favourable for the approximate method case of L/R1 ¼ 50,
R2/R1 ¼ 1.1. In other words, for the considered pipe’s lengths the
approximate method [13] for the conical pipe flow is significantly
less accurate then for the constant radius circular pipe and the
condition d1(R1/L) � 1 is no longer sufficient for it to be applicable.
ous z positions for L/R1 ¼ 10, R2/R1 ¼ 1. (a) d1 ¼ 1 (b) d1 ¼ 100.

us z positions for L/R1 ¼ 10, R2/R1 ¼ 2. (a) d1 ¼ 1 (b) d1 ¼ 100.



Fig. 7. Distribution of non-dimensional macroscopic quantities along the axial line for L/R1 ¼ 50 and d1 ¼ 1. (a) Density (b) z component of velocity (c) pressure (d) temperature.

Fig. 8. Distribution of non-dimensional macroscopic quantities along the axial line for L/R1 ¼ 50 and d1 ¼ 100. (a) Density (b) z component of velocity (c) pressure (d) temperature.
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The loss of accuracy of the approximate method is explained by
the more complex flow pattern in the case of conical pipe. Indeed,
at any section of the pipe the gas velocity is not generally directed
along the z axis, as in the case of the constant pipe radius, but also
has other components. Even for L/R1 ¼ 50 the flow pattern in the
middle section of the pipe is thus quite complex and is not well
approximated by the linearized solution. However, the accuracy of
approximation (11) does improve as the pipe gets longer, so that
one can expect, that for the sufficiently large value of the pipe
length to outlet radius L/R2 [ 1 one can obtain reasonable results
as long as d1 is not too large.

4.3. Flow field

Let us first consider the flow field for the case of the relatively
short pipe L/R1 ¼ 10. Figs. 2 and 3 shows axial distributions of
macroparameters for d1 ¼ 1 (rarefied regime) and d1 ¼ 100 (tran-
sitional/hydrodynamic regime) for all values R2/R1. It is seen that
the variable cross section of the pipe significantly influences axial
distributions, especially for d1 ¼ 100. For R2/R1 ¼ 2 the pressure
distribution deviates significantly from the linear dependence even
for d1 ¼ 1. Gas temperature deviates from the constant value not
only near the outlet, but also along the whole length of the pipe.
The gas expansion and acceleration is most rapid for R2/R1 [ 1,
d1 [ 1 and is accompanied by large drop in temperature in almost
entire pipe. Further illustration is provided on Fig. 4, which com-
pares gas number density and pressure axial distributions for the
case R2/R1 ¼ 2. It is seen that although those almost coincide for the
rarefied flow regime, in the transitional flow there is a visible
difference.

Figs. 5 and 6 show radial temperature distributions for several
positions along the pipe: z ¼ 0.025 (close to inlet), 2.61 (approxi-
mately 25% of the length), 5 (middle) and 7.37 (approximately 75%
of the length). The outlet position is excluded for the convenience
of presentation. It is seen that for the circular pipe the temperature
variation along the radius in the considered part of the pipe is quite
small for both flow regimes so that the gas temperature is almost
equal to the pipe’s surface temperature. This is one of the key
conditions for the construction of the axial solution on the basis of
the asymptotic one, corresponding to the infinite pipe. However, for
the conical pipe (see Fig. 6) the temperature departs very signifi-
cantly from the surface one. This is especially evident for the case of
transitional flow d1 ¼ 100.

Finally, Figs. 7 and 8 show axial distribution of macroscopic
quantities for the longest considered pipe L/R1 ¼ 50. It is seen that
the flow pattern is qualitatively similar to the case L/R1 ¼ 10, with
the influence of the variable cross section clearly visible. However,
the differences between circular and conical pipes are now smaller,
which is expected. For d1 ¼ 100 the jump in temperature after the
inlet is followed by a steady increase caused by heating from the
pipe’s surface. In the case of the shorter pipe L/R1 ¼10 this effect is
not observed due to the insufficient lengths of the pipe.

5. Conclusions

Rarefied gas flow through a conical pipe into vacuum has been
analysed numerically on the basis of the S-model kinetic equation.
Flow rate for several length to radius ratios and outlet to inlet radii
ratios has been computed. The results are compared with the
constant-cross section circular pipe. It is shown that the variable
(growing) pipe radius increases flow rates across all Knudsen
numbers and as well as makes the flow pattern inside the pipe
significantly nonlinear.

The presented results can be included in the recent set of bench-
mark problems in rarefied gas dynamics [7] and serve as reference
data for calculations by other approaches, methods and codes.
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