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ABSTRACT: The dielectric properties of the hydrogen disordered hexagonal phase (Ih)
of water ice have been computed using density functional theory (DFT) based Monte
Carlo simulations in the isobaric−isothermal ensemble. Temperature dependent data yield
a fit for the Curie−Weiss law of the system and hence a prediction of the temperature of
the phase transition from the Ih phase to the hydrogen ordered ice XI phase. Direct
simulations around the phase transition temperature confirm and refine the predicted
phase transition temperatures and provide data for further properties, such as the linear
thermal expansion coefficient. Results have been obtained with both hybrid and semilocal
density functionals, which yields insight in the performance of the electronic structure
method. In particular, the hybrid functional yields significantly more realistic dielectric
constants than the semilocal variant, namely ε ≈ 116 as opposed to ε ≈ 151 at 273 K
(εexperiment = 95). This can be attributed to the tendency of semilocal functionals to be
biased to configurations with a large dipole moment, and their overestimation of the dipole
moments of these configurations. This is also reflected in the estimates of the Ih/XI transition temperature, which is 70−80 and
90−100 K for the hybrid and semilocal functional respectively. DFT based sampling of the millions of configurations necessary
for this work has been enabled by a Tree Monte Carlo algorithm, designed for massively parallel computers.

■ INTRODUCTION

Water ice is a ubiquitous substance and yet despite its
familiarity and intensive study for centuries, some of its most
basic properties are not fully understood. For example, in the
1850s, Michael Faraday proposed the surface of ice was “liquid-
like”,1 yet a detailed atomic scale understanding of this structure
is still elusive. Below the onset of “quasi-liquid layer” formation,
ice at ambient temperature (ice Ih) is fully crystalline. However,
although the water ice surface shows both short and long-range
order, it also displays behavior normally associated with
amorphous materials;2 surface and subsurface vacancy for-
mation energies, which would expected to be similar, vary by
≈0.8 eV, approximately 3 times the strength of a hydrogen
bond. This observation is explicable through consideration of
the effects of orientational disorder, where a water molecule can
adopt one of six possible orientations; the orientational
disorder leads to positional disorder of the hydrogen atoms
on an ordered oxygen sublattice. This disorder contributes to
the amazing richness in ice’s phase diagram, giving rise to 15
known phases.3 This hydrogen disorder is the result of a
delicate balance between configurational entropy, which has
been accurately estimated by Pauling4 and Giauque,5 and the
small energy differences between the various configurations6

that respect the Bernal−Fowler ice rules.7 This disorder, and
the associated fluctuations of the total dipole of the sample, lead
to a high dielectric constant for solid water ice Ih (ε(272K) =
95), which is surprisingly similar to that of liquid water
(ε(278K) = 86). The term “dielectric constant” of ice Ih is

somewhat imprecise, as the hexagonal symmetry of ice Ih
implies that the dielectric tensor will have two unique
eigenvalues, ε⊥ and ε||. The former value is 2-fold degenerate,
with eigenvectors in the hexagonal plane and orthogonal to the
optical axis (also named c or z axis), whereas the eigenvector
corresponding to the latter is parallel to the optical axis of the
crystal. Indeed, the dielectric anisotropy of ice is exploited in
the characterization of polar ice sheets by radio waves8 as
polycrystalline ice causes a distinct attenuation of radio waves in
comparison to oriented ice. If all microscopic configurations of
ice are energetically equivalent, as assumed in the Pauling
model (see also Minagawa9), the anisotropy ((ε|| − ε⊥)/ε||) is
found to be vanishingly small (see, e.g., Aragones et al.10). Early
measurements of this anisotropy, performed by Paul Scherrer
and co-workers in a freezer room of a local brewery in Zurich,11

yield an anisotropy of 13% near the melting temperature. This
value, later confirmed (12%) and extended to a wider
temperature range by Kawada,12 suggests that the precise
energetics of these configurations does matter and that the
Pauling model is thus not sufficient in this context. The trigger
for these experiments at low temperature was his earlier
observation13 of an indication for a phase transition near 70 K
to what is now known as the proton ordered, ferroelectric,
hexagonal phase ice XI.14 Such a phase transition should be
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clearly visible in the dielectric properties, as the ordered phase
has a low dielectric constant, whereas the relevant component
of the dielectric tensor of the high temperature phase can be
approximated by a Curie−Weiss law

ε ε− = −∞ A T T/( )C (1)

where A is the Curie constant and TC is the Curie temperature,
which should be similar to the phase transition temperature.
These experiments are challenging and have led to a wide range
(6−127 K) of estimates for TC, as reviewed in ref 15. The
origin of this difficulty is the long dielectric relaxation time in
pure ice and the slow kinetics of the phase transition, which
requires doping with KOH to reduce the associated time
constants from years to more manageable values. The uncertain
influence of the dopant and the difficulty of growing single
crystals containing KOH have made characterization of this
phase transition a challenge to experiment. Nevertheless, recent
dielectric experiments agree on a phase transition temperature
of 72 K for H2O

16,17 (76 K for D2O
14), whereas thermally

stimulated depolarization provides further evidence for ferro-
electric ordering,18 and neutron diffraction has provided the
crystal symmetry (Cmc21) of the ice XI phase.19,20 The
dielectric tensor should thus be considered a quantity that is
very sensitive to important aspects of water, namely the
polarization of the system, and the detailed energetics of the
various hydrogen bonding configurations. The fact that the
structure of ice Ih, contrary to that of the liquid (see ref 21 for a
recent discussion), is well-known, also makes the system ideal
to quantitatively assess the quality of simulation models.
Furthermore, simulation models that reproduce the well
established experimental data, for example the high temperature
dielectric tensor, can than be used to investigate more
controversial aspects, such as the influence of electrostatic
screening between charged defects and orientational (Bjerrum)
defects. It is important to recognize that force-field based
approaches, including sophisticated high order multipole
models cannot currently accurately capture subtle differences
in energy between hydrogen orderings. Therefore, quantum
mechanical based approaches are essential for benchmarking.
Nevertheless, force field based approaches have provided
tremendously instructive insights into ice physics. Rick and
Haymet proposed a Monte Carlo move suitable for off-lattice
calculations of ice22 and demonstrated that several non-
polarizable empirical atomistic models of water significantly
underestimate (by 100%) the dielectric constant of ice. This
result was later verified and extended by several other
groups.10,23,24 Adding polarizability to the model improved
results significantly, which was attributed to the larger
molecular dipole in these models.22 However, none of the
methods displayed a significant anisotropy of the dielectric
tensor, as observed experimentally, which may relate to the fact
that these models predict an antiferroelectric ordered phase to
be more stable than the experimental ferroelectric phase.10,22,24

In fact, Hirsch and Ojamaë found6 an almost anticorrelation
between the energies computed with density functional theory
(DFT) and empirical methods for the 16 unique proton-
ordered configurations compatible with an orthorhombic unit
cell containing eight water molecules, which has been attributed
to incorrect higher order electrostatic multipoles in the
empirical force fields.25 Furthermore, HF and DFT yield
(independent of the density functional employed), a lowest
energy configuration that is indeed ferroelectric,6,25−28

indicating that these methods might be capable of reproducing

the fine energy details in this system. Singer and co-workers
parametrized an analytical model based on graphs, i.e.,
hydrogen bond network patterns, to DFT (BLYP) reference
values, and with this approach were able to perform Monte
Carlo simulations that predict the phase transition temperature
between Ih and XI to be 98 K in good agreement with
experiment.26,29 This is a very interesting and powerful
approach but is probably limited to models containing less
than ≈60−70 molecules, because of the combinatorial
explosion of enumerating possible hydrogen bonding arrange-
ments. In addition, the model may not be easily extended to
consider orientational (Bjerrum) or ionic defects (i.e., hydro-
nium and hydroxide). Unfortunately, the dielectric properties
were not reported, so cross validating the employed model
directly is not possible. In all simulations discussed here,
nuclear quantum effects, which are relatively small in this
context, have not been taken into account, and hence
comparison with results for D2O, which is the more “classical”
isotope, will be considered whenever possible. Rusnak and co-
workers estimated the static dielectric constants of liquid water
and ice for PBE, using a free energy perturbation approach that
employs a classical potential to sample configurations, which
are reweighted to ab initio values.30 However, obtained results
underestimate the experimental value significantly (ε(253K) =
67). This difference might in part be due to their use of a
Bader-like analysis to obtain molecular dipoles, instead of
relying on the modern theory of polarization.31,32 The latter
theory was employed in the simulations of Sharma et al. to
compute the dielectric constant of liquid water.33 Based on a 20
ps simulation of liquid water with the PBE functional in the
canonical ensemble (NVT), a value in surprisingly good
agreement with experiment was obtained (ε(330K) = 67 vs
ε(330K) = 68). For ice Ih, the proton configurations could not
be sampled, but a molecular dipole derived from a
representative ice configuration (3.32 D), in good agreement
with experiment would be obtained for a plausible angular
correlation factor GK ≈ 2.55. It is noteworthy that the same
correlation factor obtained by commonly used empirical
potentials varies in the range 1.34−2.7.10
In the current work, the merits of the various approaches

mentioned above have been combined, and explicit sampling of
hydrogen disorder at the DFT level is employed (1) to
compute the dielectric tensor at various temperatures using the
modern theory of polarization, (2) to determine the Ih/XI
phase transformation temperature directly, and (3) to assess the
quality of semilocal and hybrid density functional theory for
water ice.

■ COMPUTATIONAL METHODS
Calculations have been performed with the free simulation
package CP2K/Quickstep34,35 that has been enhanced with a
Monte Carlo (MC) algorithm, named Tree Monte Carlo
(TMC). The system studied consists of 96 water molecules in
an orthorhombic cell, initially 13.57 Å × 15.67 Å × 14.73 Å.
This cell is sufficiently large to allow for a Gamma-point
calculations and is similar in size to the classical model systems
employed previously (e.g., 128 molecules in ref 22). Near the
phase transition temperature, size effects cannot be excluded.
Monte Carlo simulations have been performed in the isobaric−
isothermal (NPT) ensemble36 at 1 bar, except when the
canonical (NVT) ensemble is mentioned explicitly. DFT
calculations are based on the semilocal functionals by Perdew,
Burke, and Ernzerhof (PBE)37 and by Becke, Lee, Yang, and
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Parr (BLYP)38,39 and the corresponding hybrid functionals
PBE040 and B3LYP.39,41,42 The latter two functionals contain a
fraction of Hartree−Fock exchange (denoted HFX), 25% and
20%, respectively, and are thus nonlocal. All functionals are
combined with a dispersion correction by Grimme (which we
denote D2),43 which is essential to obtain a qualitatively correct
density of liquid water in NPT simulations.44 Norm-conserving
Goedecker−Teter−Hutter (GTH)45 pseudopotentials are
employed together with a triple-ζ valence basis set and two
polarization functions (TZV2P). HFX is computed with a
robust γ-point implementation46,47 using a truncation radius of
6 Å, and the auxiliary density matrix method (ADMM) with the
pFIT3 basis.48 Periodic boundary conditions have been used
throughout, and electrostatics are computed using an Ewald-
sum. This implies so-called conducting or tinfoil boundary
conditions,49 suitable for samples embedded in a medium of
high dielectric constant, and is equivalent to enforcing closed
circuit electrical boundary conditions without applied bias.50

These boundary conditions are almost always applied in
electronic structure calculations and typically used in force field
based simulation of ice (see, e.g., refs 10, 22, and 24). The plane
wave cutoff was 800 Ry for NPT and 400 Ry for NVT
calculations, with the number of grid points kept fixed during
NPT simulations.35,51

The elements of the dielectric tensor are obtained as the
second moments of the dipole distribution using

ε ε π= + ⟨ · ⟩ − ⟨ ⟩⟨ ⟩αβ α β α β∞

⎛
⎝⎜

⎞
⎠⎟Vk T

4
3

( M M M M )
B (2)

where Mα is the component of the total cell dipole in the α
direction, ε∞ is the optical dielectric constant, taken to be 1 in
the following, and ⟨·⟩ denotes ensemble averaging. In the
context of periodic DFT, changes in the cell dipole are obtained
from the Berry phase formulation of polarization.31

Monte Carlo generates a sequence of configurations, a
Markov chain, that samples a given ensemble based on
acceptance/rejection of random configurational changes
(moves). Three important strengths of Monte Carlo are
exploited in the context of this study. First, in addition to the
traditional moves (atom and molecule translation, molecule
rotation, and nonisotropic volume changes), a proton
reordering move is employed.22 This specialized move allows
for reorienting several molecules in a closed loop of hydrogen
bonded neighbors in a way that obeys the Bernal−Fowler ice
rules and may change the effective dipole of the unit cell,
circumventing the high energy barriers that the physical process
must overcome in experiment or unbiased molecular dynamics
simulations. Second, in the context of DFT it is advantageous
to employ a presampling strategy in which a sub-Markov chain
is generated with an approximate classical potential.51−53 In this
nested MC approach, the entire sub-Markov chain is accepted/
rejected with a single DFT calculation, leading to exact
sampling of the DFT potential at much reduced computational
cost. Note that converged MC results are independent of the
approximate classical potential, but the rate of convergence
depends on the quality of the approximation. Here a refitted
classical nonpolarizable potential based on the model from ref
54 has been employed, which provides good acceptance. In our
current approach, 50 (NPT) or 100 (NVT) nested MC moves
are applied, which are constrained to a fixed subcell with edges
of length 8 Å to retain sufficiently large acceptance rates in the
DFT step. This nested MC setup leads to a high fraction of the

DFT calculations being employed to accept/reject hydrogen
reordering moves, resulting in effective sampling of the cell
dipole. Third, Monte Carlo contains an intrinsic parallelism
that has so far not yet been exploited in molecular simulation
but is here used by the TMC algorithm for obtaining long
Markov chains on massively parallel computers. It is based on
the observation that new (future) configurations in the Markov
chain can be constructed on the fly and instantaneously, before
the energy of the current configuration has been evaluated, as
neither energy nor forces are required for the MC moves.55

This approach requires speculation on the outcome of the
acceptance check or, when used in a systematic fashion, builds a
tree of configurations assuming both possible outcomes of this
check. All the configurations present in the tree can be
computed simultaneously, limited only by the available
resources. Finally, the Markov chain, identical to the conven-
tional serial one, is constructed, discarding the configurations
that are off the chain, as the energies become available. The
implementation of this algorithm, which includes a number of
techniques to reduce the amount of discarded work, is freely
available34 and will be discussed in more detail elsewhere. TMC
has been key to reduce the wall time per generated Markov
chain element to 2.5 and 14 s for PBE and PBE0 respectively,
and ultimately allowed for single MC chains with nearly a
million moves.

■ RESULTS AND DISCUSSION
The temperature dependent dielectric constant of ice Ih at
ambient pressure is a central result of this work. It is a
challenging quantity to obtain by simulation, as extensive
sampling is necessary for convergence. However, provided
100000s of MC steps are performed, convergence can be
reached even with first principles simulations. This is
demonstrated for five MC simulations in the NPT ensemble,
based on either the PBE-D2 or PBE0-D2 functional, in the
upper panel of Figure 1. The relevant components of the
dielectric tensor obtained by these simulations are summarized
in Table 1. These data clearly show that ε obtained with PBE-
D2 is significantly larger than the one obtained with PBE0-D2.
At the melting point, ε(273K) = 116 is in fair agreement with
the experimental result of Johari et al.15 ε(273K) = 95, whereas
PBE-D2 significantly overestimates it (ε(273K) = 151). The
origin of this difference is related to the nature of the density
functionals, as we discuss in more detail below. Of particular
interest is the value of the dielectric anisotropy ((ε|| − ε⊥)/ε||),
because it is indicative of the XI/Ih phase transition.
Simulations based on empirical force fields predict very small
or zero values of the anisotropy.10,22,24 PBE0-D2 calculations at
273 K result in an anisotropy value of 18%, which is slightly
greater than the measured value of approximately 12% of
Kawada et al.12 PBE-D2 overestimates the anisotropy more
significantly (22%), indicative of a bias toward configurations
that display a large dipole along the parallel direction. Note
that, the average molecular dipole moments found for apolar ice
slabs computed with PBE were approximately 10% greater than
PBE0,2 which contributes to the observed difference in
anisotropy using the semilocal and hybrid functionls. As the
temperature decreases and the Ih/XI phase transition temper-
ature approaches, the anisotropy becomes larger. A fit of the
Curie−Weiss law through the simulation data, shown in the
lower panel of Figure 1 yields TC = 60 K and TC = 79 K for
PBE0-D2 and PBE-D2, respectively. However, given the limited
data, the uncertainty in this fit is likely large, on the order of 10
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K. Furthermore, a true divergence as described by equation eq
1 cannot be observed due to finite size effects. Nevertheless, the
Curie temperatures found are close to the experimental phase
transition temperature; 72 K for H2O and 76 K for D2O.
On the basis of these estimates, the phase transition

temperature has been determined by direct simulation. In
particular, NPT MC runs at various temperatures between 50
and 100 K have been started from the same ice Ih configuration
and run for at least 250 000 MC steps. As shown in Figure 2,
this leads to a spontaneous phase transformation to the
expected ice XI phase for the low temperatures, whereas the
systems at the higher temperatures remain in the ice Ih phase.
The resulting phase transition temperatures can thus be
bracketed by 70−80 K (PBE0-D2) and 90−100 K (PBE-D2),
in fair agreement with the estimates derived from the Curie−
Weiss fit. The PBE-D2 result is in agreement with the 98 K
computed by a graph based model parametrized to the
semilocal BLYP functional, yielding additional support for
this approach.26,29 Nevertheless, the PBE0-D2 model can be
assumed to be the most predictive, given its favorable

comparison to dielectric experimental data, obtained with
well established experiments near the melting point.
Furthermore, the fact that the transition temperature is
relatively insensitive to the precise DFT model suggests that
this prediction will be robust.
The advantage of direct MC simulation of a reliable atomistic

model is that further properties can be obtained from the
generated trajectories. Here we investigate the temperature
dependent density, or equivalently the volume, given its
relevance for ε (see below) and the fact that this quantity is
directly accessible from the NPT simulations performed.
Indeed, NPT simulations employ a flexible simulation cell,
which fluctuates around a temperature dependent average value
(σ(273K) ≈ 0.12 Å for our simulation cell). At the melting
point, both models overestimate the density, with 0.960 and
0.995 g/cm3 for PBE0-D2 and PBE-D2 respectively, compared
to the experimental results obtained by Röttger56 (0.917 g/
cm3). PBE0-D2 is again the best model, with a volume that is
underestimated by 4.5%. The temperature dependence of the
volume can be described by the linear thermal expansion
coefficient α(T) defined by

α = ∂
∂

T
V T

V T
T

( )
1
3

1
( )

( )
(3)

Only for PBE-D2 are sufficient data available to yield a stable
polynomial fit of the temperature dependence of the volume,
using a third-order polynomial for the ice Ih phase (100−273
K) and a second-order polynomial for the ice XI phase (60−90
K). In Figure 3, the corresponding α(T) is compared to the
experimental results by Röttger.56 Given the slow kinetics of
the XI/Ih phase transition, it is reasonable to assume that the

Figure 1. Upper panel: running averages of ε for PBE-D2 at 273 K
(orange), 200 K (red), and 150 K (brown) and PBE0-D2 at 273 K
(light green) and 150 K (green). The experimental value of Johari15 at
273 K is shown in blue. Lower panel: converged values of ε⊥ for PBE0-
D2 (circles) and PBE-D2 (triangles), with the corresponding fit (solid
green and dashed brown lines) of Curie−Weiss law (1). Experimental
data of Kawada et al.16 (light blue) are shown for comparison.

Table 1. Elements of the Dielectric Tensor and Dielectric
Anisotropy Obtained with PBE-D2 and PBE0-D2 in the
NPT Ensemblea

T
(K)

105 MC
moves ε ε⊥ ε||

(ε|| − ε⊥)/
ε||

PBE0-D2 273 7.6 116 108 ± 3 131 17%
PBE0-D2 150 8.6 266 234 ± 0 331 30%
PBE-D2 273 10.1 151 139 ± 7 174 20%
PBE-D2 200 8.3 238 202 ± 7 310 35%
PBE-D2 150 8.4 366 298 ± 28 502 41%
aThe difference between εxx, εyy, and ε⊥ = (εxx + εεyy)/2 is used as an
estimate of the statistical uncertainty.

Figure 2. Evolution of the z component of the total cell dipole for
NPT calculations at various temperatures: upper panel, PBE0-D2;
lower panel, PBE-D2. The different colors and symbols correspond to
100 K (red, crosses), 90 K (green, squares), 80 K (blue, circles), 70 K
(violent, triangles up), 60 K (light blue, triangles down), and 50 K
(brown, diamonds). The solid (orange) lines indicate the permanent
dipole of the ice XI phase.
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experimental system consists of a mixture of both phases,57

with a precise constitution that depends on the preparation
method. Indeed, ice XI has never ever been reported to have
been made more than 70% pure.14 It is therefore reasonable to
assume that the experimental curve can be approximated by a
combination of the simulation data of the pure phases, which
suggests good qualitative agreement. In particular, for even
lower temperatures, a negative thermal expansion coefficient
could be expected.
Finally, we show that the observed differences between PBE-

D2 and PBE0-D2 are more general in nature. To do so, we
have performed MC simulations at constant volume (NVT),
273 K, and experimental density, and compared two pure DFT
(PBE-D2 and BLYP-D2) and two hybrid (B3LYP-D2 and
PBE0-D2) functionals. The data for these simulations is
summarized in Table 2. Constant volume simulations facilitate

the comparison between the functionals and can be used to
highlight the importance of employing the NPT ensemble for
the calculation of the dielectric constant. In particular, the PBE-
D2 simulations have been performed at 100% and 106% of the
experimental density, the latter being similar to the equilibrium
density of the PBE-D2 functional. Although the latter
simulation yields ε = 145, very similar to the NPT results of
ε = 151, the simulation at experimental density yields ε = 127, a
significant reduction of the value. Compared to the NPT
simulations, a similar reduction is also observed for PBE0-D2,
which at experimental density provides an even better estimate

of ε (103) and anisotropy (12%). This sensitivity of ε to the
density (volume), suggests that modifications to the functional
that improve the lattice parameters could yield enhanced
dielectric properties. At the same density, the overestimation of
ε in the case of semilocal functionals is due to two effects,
visible in Figure 4. These effects are more important than the

small differences in geometry between semilocal and hybrid
functionals (e.g., rOH = 1.000 and rOH = 0.985, respectively).
First, as can be seen as a shift of the position of the peaks,
dipoles of a given configuration are enhanced by roughly 5%.
Second, visible by the area under the peaks, these polarized
configurations are sampled more often, i.e., are energetically
favorable. Both effects are consistent with the overestimation of
polarizability by semilocal density functionals (see also ref 2)
and with the improvements expected for a hybrid functional.58

Ultimately, this is a result of the underestimation of the band
gap by semilocal functionals, a deficiency that is, also in water
ice, significantly improved by hybrid functionals.28

■ CONCLUSION
The temperature dependent dielectric constant of ice Ih
contains a wealth of information about the interactions between
water molecules. It contains the most visible signature of the
Ih/XI phase transition, which is the result of a delicate balance
between energy and entropy. Here, this property has been
computed directly from extensive sampling of hybrid and
semilocal DFT models in the appropriate ensemble. We find
that semilocal DFT significantly overestimates the dielectric
constant (ε(273K) ≈ 150 for PBE-D2), whereas hybrid density
functionals (ε(273K) ≈ 116 for PBE0-D2) provide better
agreement with experiment (ε(273K) ≈ 95). The electronic
overpolarization and the energetic bias toward configurations
with large dipole both contribute to the error observed for the
semilocal functional. This effect is also observed for a different
family of functionals (BLYP-D2 and B3LYP-D2) and is thus
likely of general nature. Furthermore, we expect that this error
will also be present in the liquid phase, which could have
implications, for example, for simulations of the behavior of
water near (electrified) interfaces, or for the solvation and
interaction of ions including incipient species such as the
Zundel ion and processes involving proton transport. The Ih/
XI phase transition temperature has been determined both
from a Curie−Weiss fit and from direct MC simulations for
both PBE0-D2 and PBE-D2. All these values are in good
agreement, lending support to our methodology, and yield a

Figure 3. Linear expansion coefficient α, fitted using NPT ensembles
calculated with and PBE-D2 functionals for the ice Ih phase (crosses)
and ice XI phase (triangles), compared with experimental results of
D2O of Röttger56 (solid red line).

Table 2. Elements of the Dielectric Tensor and the
Dielectric Anisotropy Obtained in the NVT Ensemble at 273
K and Experimental Density with the PBE-D2, PBE0-D2,
BLYP-D2, and B3LYP-D2 Functionalsa

T
(K)

105 MC
moves ε

ε⊥ ±
((εxx− εyy)/2) ε||

(ε|| − ε⊥)/
ε||

exp (ref 15) 273 95
exp (ref 12) 273 90 87 99 12%
PBE-D2 273 6.9 127 114 ± 2 152 25%
PBE-D2
(106%)

273 3.2 145 126 ± 3 183 31%

PBE0-D2 273 2.8 103 98 ± 4 112 12%
BLYP-D2 273 13.7 122 110 ± 1 144 24%
B3LYP-D2 273 3.2 110 98 ± 1 133 26%
aTo illustrate the effect of compression, one additional NVT result at
106% of the density is provided for PBE-D2.

Figure 4. Distribution of the z component of the dipole moment,
weighted by the dipole squared. This weighting corresponds to the
contribution of these peaks to ε. Results have been computed for
semilocal (PBE-D2 and BLYP-D2) and hybrid (B3LYP-D2 and PBE0-
D2) functionals in the NVT ensemble at 273 K.
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transition temperature of 70−80 K (PBE0-D2) or 90−100 K
(PBE-D2). Given the validation of our model via the dielectric
constant, we expect the PBE0-D2 model to be most predictive.
This PBE0-D2 result confirms accurately the measurements by
Kawada (ref 16) and thus suggests that the experimental
procedure of KOH doping can indeed be used to accelerate the
kinetics of the Ih/XI phase transformation without influencing
the final equilibrium structure formed. Finally, MC sampling of
explicit atomistic models yields data that can be used to
compute several properties, and as an example, the linear
thermal expansive coefficients of ice Ih and XI has been
reported in their respective temperature ranges. This shows
that the steady increase in computer power and the
development of novel algorithms have made the extensive
sampling of disordered solids at the DFT level possible, and
that this approach can now be used to evaluate properties that
have long challenged experiment and theory alike.
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