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ABSTRACT: The standard approach to calculating the dielectric
constant from molecular dynamics (MD) simulations employs a variant
of the Kirkwood−Fröhlich methodology. Many popular nonpolarizable
models of water, such as TIPnP, give a reasonable agreement with the
experimental value of 78. However, it has been argued in the literature
that the dipole moments of these models are effective, being smaller than
the real dipole of a liquid water molecule by about a factor of elε , or

roughly 2 . If the total or corrected dipole moment is used in
calculations, the dielectric constant comes out nearly twice as large, i.e.,
in the range of 160, which is twice as high as the experimental value.
Here we discuss possible reasons for such a discrepancy. One approach
takes into account dynamic corrections due to the dependence of the
dielectric response of the medium producing the reaction field on the
time scale of dipole fluctuations computed in the Kirkwood−Fröhlich method. When dynamic corrections are incorporated into
the computational scheme, a much better agreement with the experimental value of the dielectric constant is found when the
corrected (real) dipole moment of liquid water is used. However, a formal analysis indicates that the static properties, such as
dielectric constant, should not depend on dynamics. We discuss the resulting conundrum and related issues of simulations of
electrostatic interactions using periodic boundary conditions in the context of our findings.

■ INTRODUCTION
In the past several decades, there has been much interest in
developing methods to calculate the dielectric constant of
materials, particularly water and biomolecules, from classical
molecular dynamics (MD) simulations.1−8 Such information is
critical to theoretical calculations of pKa’s,9 solvation energy,10

and interaction potentials between the quantum mechanical
and classical zones of embedded QM/MM simulations.11

However, even in the case of a homogeneous, isotropic
medium, calculating the dielectric properties of a material
carries many subtleties. (For a recent discussion, see, e.g., ref
12.)
The original statistical dielectric response theory was

developed by Kirkwood and Fröhlich13,14 (see the Appendix
for a discussion of this theory). It considers a homogeneous
medium from which a spherical sample is drawn. Fluctuations
in the dipole of moment of the sample can be related to the
dielectric constant of the medium via the Kirkwood−Fröhlich
(KF) equation
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However, when calculating the dielectric constant from MD
simulation, eq 1 is modified in order to account for the
boundary conditions of the simulation.15−17 An ingenious
original analysis by De Leeuw, Perram, and Smith,18 and later

Neumann and Steinhauser16,19 showed that if calculations are
done using periodic boundary conditions (PBCs) the
corresponding expression is simplified to
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This will be further elaborated upon in the theory section of
this paper. This expression has become the standard method
for computing dielectric constants in MD simulations. For
example, to probe dielectric properties of water models, one
calculates quadratic fluctuations, and because the constant is
large, the right-hand side, which is sometimes called the
Kirkwood factor, G, essentially gives the dielectric constant of
the model. Results for typical TIPnP water models, given later
in this paper (Table 2), produce results for a Kirkwood factor
on the order of 70−90 (see Table 2).
We notice, however, that the model TIPnP dipole values are

all in the range of 2.2−2.3 D, whereas ab initio MD
calculations show that the actual average dipole model of a
liquid bulk water is around 3.0 D or even slightly higher at
temperatures near 300 K.20−22 This difference was argued to
be related to the fact that the dipole moments of models are all
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effective, being scaled by a factor of about elε , or 2 (εel ≡
ε∞ is the electronic dielectric response at high frequency) to
implicitly account for the electronic screening of real charges.
Therefore, if a total or corrected dipole moment of about 3.0 D
were used in calculations, the Kirkwood factor in eq 2 would
be twice as large, and the corresponding dielectric constant
would come out roughly in the range of 160, which is twice as
high as the experimental value. Here we discuss possible
reasons for such a discrepancy.
The KF equation, in all of its forms, considers only the static

dielectric constant and assumes, by self-consistency, that the
polarization of the surrounding medium follows instanta-
neously the fluctuating polarization of the spherical sample.
This assumption, a key subtle point of KF theory, is discussed
in this paper. The discrepancy discussed above prompted us to
revisit KF theory and consider again the nature of the average
⟨δM2⟩KF in eq 1. We show that the ambiguous nature of
⟨δM2⟩KF may result in a different connection of dielectric
constant and dipole fluctuations simulated under PBCs than
that in the usually employed eq 2. Both experiments and
theory show that the dipole reorientation of water molecules
has a finite time scale; therefore, the dielectric response of the
medium must occur on a similar time scale.19,23 Here we show
that a modified theory, which corrects for the finite time scale
of dielectric response, gives rise to a different connection than
eq 2. Our theory, inspired in part by an approach originally
suggested by Neumann and Steinhauser,19 uses the frequency-
dependent dielectric constant ε(ω) to introduce a correction
in the formula for the static dielectric constant, ε ≡ ε(ω = 0).
We applied our theory to study six commonly used water

models: SPC/E,24 TIP3P,25 TIP4P,26 TIP4P-Ew,27 TIP4P/
2005,28 and TIP5P.29 For the purposes of this paper, we focus
our attention on PBC MD simulations using Ewald summation
algorithms for the evaluation of electrostatics. We do so
because, while other methods do exist, PBC MD simulations
using Ewald sums have seen widespread use due to their
efficiency and accuracy.
We then further analyze the obtained results within the

context of KF theory of dielectric constants and in a broader
context of application of Ewald summation in MD simulations
and arrive at the conclusion that, while the dynamic
corrections appear to help reconcile the absent electronic
polarizability in nonpolarizable water models and their high
dielectric constant, the problem remains open because static
properties such as dielectric constant should not depend on
dynamics. We discuss the resulting conundrum and related
issues of simulations of electrostatic interactions using PBCs in
the context of our findings. Our analysis highlights once again
the difference between the artificial Ewald field and the
reaction field (RF) of a real system.

■ THEORY

Kirkwood−Fröhlich Formalism. We begin the discussion
of our theoretical model with a brief review of KF theory and
its extension to PBC MD simulation using Ewald summation
algorithms (including particle-mesh Ewald).4

Consider the thermal fluctuations in a dielectric material.
Select a spherical sample from the material and assign that
sample a total dipole moment M(say in direction x).
Fluctuations in M are quadratic if the sample is sufficiently
large, and the distribution over M is Gaussian30

P M( ) e eM M H M k T/2 ( )/2 2
eff B∝ =− ⟨ ⟩ − (3)

where we defined the effective Hamiltonian of our system as
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On the other hand, for polarization energy of the sample, we
can write
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where α is polarizability of the sample. If the sample were
isolated, eq 5 would be its total polarization energy. However,
because the sample is actually part of the larger dielectric
medium, the induced dipole M polarizes the surrounding
dielectric, creating the RF, which in turn interacts with the
dipole M. Thus, the effective Hamiltonian in eq 5 must be
modified.
To find the RF, we make the following approximation.

Assume that the dipole M is a point dipole sitting in the center
of the spherical cavity occupied by the sample; alternatively, we
can assume that dipole M is homogeneously distributed in the
sample. In both cases, the RF of a polarized dielectric
surrounding the spherical sample of radius R is
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V is the volume of the sample. This field is directed along the
dipole M and “helps” to polarize the sample. The modified−
reduced energy of polarization now is
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The parameter λ in eqs 6 and 7 is of critical importance. It
depends on the nature of the boundary conditions of the
sample considered. For a sample with spherical boundary
conditions, the “true” RF gives the λRF shown in eq 6.
However, in the case of PBCs, as we show next, an artificial RF
is produced that corresponds to a different λ. Also, if we
formally assume that outside of the spherical sample the
dielectric material has a different value of ε′, the RF will be
different as well, but the form of the effective Hamiltonian will
be the same, only with a different λ′ that correspond to ε′ as
given by eq 6.
In PBC simulations, the simulation box is replicated in 3D

space; hence, each replica box will have the same dipole M.
Therefore, we can treat our system in the same manner that we
would treat a homogeneously polarized dielectric of polar-
ization density P. Because our sample was spherical, the field
from the surrounding polarization was

E P
M
V
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3

4
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Comparing this with ERF, we see that the artificial field created
by the image simulation boxes produces a field similar to that
of the true RF ERF. The only difference is that now

1PBCλ λ= = (9)

Thus, the effective Hamiltonian is the same in both PBC and
RF cases and is given by eq 7. The only difference is the value
of λ. From here we can derive a modified KF expression for
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PBC. Rearranging terms in eq 7 using eq 4, we see that for
thermal fluctuations we have
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Introducing now the Kirkwood factor G as
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for an isotropic dielectric, we have
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Combining eqs 10 and 11 together with eq 6, we find
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At this point, a crucial assumption is made, namely, that the
Kirkwood factor calculated within a RF model (with the same
ε outside as in the sample) GRF is the same as that in eq 1 GKF.
The nature of this assumption is discussed in the Appendix.
According to this model then
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By solving eq 13 for GPBC, we find that
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This is the key equation that is used in computing the
dielectric constant in computer simulations. This is only one
specific case when the Kirkwood factor G is calculated in a
model system that formally corresponds to λ = 1.
In a more general case, when the Kirkwood factor GRF′ is

calculated for a (RF) model of a spherical sample of dielectric
material ε, surrounded by a dielectric with different ε′, the
connection is as follows16
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It is seen that the above case of PBC with λ = 1 (see eq 6)
indeed corresponds to formal ε′ = ∞, as was shown by the
pioneers of the field using different methods.16,18 The above
equation holds for any possible value of ε′, including the case
of ε′ = 1 or ε′ = ε. Here again the same key assumption, GKF =
GRF, is made. We consider next a possibility that this key
assumption is treated differently.
Frequency-Dependent Dielectric Response. In the

above, we assumed that polarization of the medium
instantaneously follows fluctuations of the dipole of the
sample, and therefore, in the RF (eq 6), we use the same
dielectric constant, ε, as that in the KF formula, eq 14. This is
motivated by the idea of self-consistency; the dielectric
constant of the spherical sample should match the dielectric
constant of the surrounding material. However, this
assumption can be doubted because we know that dielectric
response depends on the time scale of the perturbation, ε(ω).
More discussion of this key point is given in the Appendix.

Suppose that actual fluctuations of the dipole occur on the
time scale of ω′ and the corresponding dielectric response is
ε(ω′) ≡ ε′. Then, according to eq 13
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This is the actual relation that can be used to calculate the
static dielectric constant of the material ε, assuming that we
know ε′. Consider a case when dielectric constants are large, as
they are in the case of water; we then can simplify the above
relation to
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ε’ can be obtained experimentally using dielectric spectrosco-
py. Figure 1 shows the dielectric response of water as a
frequency of the driving electromagnetic field.

In practice, it is difficult to assign a precise value for ω using
just MD simulation. One good approximation is to use the
reciprocal of the Debye relaxation time. The Debye relaxation
is defined by the exponential fit to the dipole autocorrelation
function

t
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We will denote the special frequency corresponding the
reciprocal of τD as ωD.
A more theoretically accurate formula is to say that the

Fourier transform of an exponential autocorrelation function is
a Lorentzian probability distribution centered at around τD.
Therefore, in order to calculate ε, we take the average of eq 19
using the Lorentzian weighted probability distribution
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Figure 1. Dielectric response of liquid water at 300 K as a function of
the frequency of the applied electric field. The data used to generate
this plot was taken from Daimon et al. and Ellison et al.23,31
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In the subsequent analysis of nonpolarizable water models with
MD simulations, eq 21 was used to calculate the dynamically
corrected dielectric constant. These calculations provide data
for probing quantitatively the general effect of frequency-
dependent response of the medium.

■ METHODS
For each separate water model, a 20 ns simulation was
performed in an NVT ensemble using Langevin dynamics and
a temperature of 300 K. This is in accordance with many
studies that have shown that simulations in excess of 10 ns are
required in order for dielectric properties to converge.7,32

Simulations were performed using PBCs with the particle-
mesh Ewald algorithm for the evaluation of long-range
electrostatics. A cutoff distance of 12 Å was employed. Each
simulation box was of size 30 Å × 30 Å × 30 Å and consisted
of 895 separate water molecules; this corresponds to a number
density of 0.033 waters per cubic Å or alternatively 33 waters
per cubic nanometer.

■ RESULTS
Table 1 compares the standard KF approach to calculating the
dielectric constant to our dynamically corrected approach.

Note that the values presented for GPBC and τD generally
correspond to values found in other studies4,7,24−29,32 and that
GPBC converges well over the course of the 20 ns simulations
(Figure 2). In all cases, our results show that accounting for the
frequency of dielectric response significantly reduces the
overall static dielectric constant.
Results of Table 1 show the substantial quantitative

difference between the static and dynamic response of the
medium in computing dipole fluctuations of a sample by MD
simulations; the latter of course is much closer to reality than
the assumed instantaneous response with a static dielectric
constant. (This seemingly obvious and intuitive point will be
discussed further later in the paper.) With the dynamically
corrected values of the Kirkwood factor and corresponding
dielectric values given in Table 1, we can now return to the
question of missing electronic polarizability in water models
used in our calculations as calculated values of static dielectric
constant are mostly well below the experimental value of 78.
This is done next.
We first recall the following. All nonpolarizable water

models, including the ones used in this study, are reported to
have significantly lower dipole moments (Table 2) than what is
measured in experimental and ab initio studies, where the
dipole moment of water is reported to be around 3.0 D.34

Previous work by Leontyev and Stuchebrukhov35−37 has

shown that the dipole moment of water models can be
thought of as an effective value, /eff

l elμ μ ε= , where μl is the

true dipole moment of liquid water and 1.78 2elε = ≈ is the
electronic, high-frequency dielectric constant of water. (The
exact scaling factor is difficult to pinpoint as it depends on the
model of interaction of the dipole moment with the polarizable
electronic continuum.36)
Because the effective dipole moment of water in MD models

is indeed significantly lower than the experimental dipole
moment, one would expect that the dielectric constant should
be lower as well. While the standard KF formalism does not
give such results, taking into account dielectric response time
with dynamic corrections does.
It is noteworthy that the dependence of dielectric constant

on the Kirkwood factor in the dynamically corrected eq 19,
unlike eq 15, is sublinear, which means that if one simply scales
GPBC by a factor of εel = 1.78 this does not scale the dielectric
constant in eq 19 by the same value. Indeed, Table 2
demonstrates this sublinear dependence. Now, as we correct
(scale) the Kirkwood factor by the value of electronic
polarizability εel = 1.78, the resulting dielectric constant is in
much better agreement with the experimental value. Thus, it
appears that the dynamic corrections provide a solution to the
problem of accounting for the missing electronic polarizability
in dielectric constant calculations using nonpolarizable water
models.

■ DISCUSSION
Dynamics Correction. Our computational results demon-

strate several important points. First, the simulations with

Table 1. Dielectric Properties and the Dynamically
Corrected Dielectric Constant for All Water Models
Studieda

water model GPBC τD(ps) ε(KF) ε(dynamically corrected)

TIP3P 97.7 ± 1.1 9.4 98.7 64.52
SPC/E 71.3 ± 1.2 16.8 72.3 61.18
TIP4P 50.3 ± 0.8 9.6 51.3 44.78
TIP4P-Ew 63.4 ± 0.9 16.1 64.4 56.60
TIP4P/2005 57.0 ± 0.4 17.3 58.0 53.44
TIP5P 93.7 ± 1.0 19.8 94.7 73.42

aThe errors shown in GPBC were estimated using the method
described in Straatsma et al.33.

Figure 2. Convergence of GPBC for simulations of all water models
studied.

Table 2. Dipole Moments of Water Models and Results of
Scaling GPBC by εel = 1.78 in Accordance with the Missing
Electronic Polarizability of Water Modelsa

water model μeff (D) GPBC GPBCscaled ε ε scaled

TIP3P 2.35 97.7 173.9 64.52 82.68
SPC/E 2.35 71.3 126.8 61.18 83.42
TIP4P 2.18 50.3 89.6 44.78 62.06
TIP4P-Ew 2.32 63.4 112.9 56.60 78.14
TIP4P/2005 2.31 57.0 101.5 53.44 74.93
TIP5P 2.29 93.7 166.8 73.42 97.20

aThe ε scaled column corresponds to results of using GPBC scaled in
eq 19.
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PBCs and Ewald treatment of electrostatic interactions
produce fluctuations of the dipole moment of the sample
⟨δM2⟩PBC, measured here as the Kirkwood factor GPBC, that are
quite different from the “real” fluctuations, GKF, which are
physically related to those evaluated with the RF model, GRF.
The difference is due to the artificial character of the Ewald
field acting on a sample, which is similar to the RF, but
corresponds to the environment with dielectric constant ε′ =
∞; see eq 16 and related comments. Numerically the
difference for water is a factor of about 3/2, as seen in
comparison of eqs 1 and 2. Indeed, if both equations are
correct, the PBC Kirkwood factor GPBC (see Table 2) and the
“real” GKF are different by a factor of about 3/2.
For quadratic fluctuations of the dipole moment, theory

provides a simple relation between GPBC and GRF, which allows
connection to the artificial fluctuations GPBC and the real
dielectric constant, expressed by eq 2. In this connection,
however, we make a subtle assumption that the real
fluctuations GKF are the same as those calculated with the
instanteneous RF of the static dielectric constant (ε′ = ε in eq
16). This instantaneous character of the response, in general, is
also questionable because the response of the medium is
obviously time-dependent.
Second, our calculations in the previous section clearly

demonstrate the substantial difference for water between the
static and time-dependent response. The latter is obviously
more closely related physically to a typical real system of
interest: a sample surrounded by the material, of which
dielectric response depends on the time scale of perturbation.
Yet, for specific calculations of the static dielectric constant, the
role of dynamics is not at all clear as we specifically evaluate
response to an infinitely slow (i.e static) perturbation.
Although we run MD for calculation of the average quadratic
fluctuations and dynamics does depend on the type of
response of the surrounding medium to our sample, the
question still remains as to whether it is what we need to
calculate for this specific problem. The problem is not at all
straightforward and requires detailed analysis of what we are
actually evaluating. This analysis for clarity purpose is given
separately in the Appendix (which is in fact an essential part of
this paper). The conclusion of this analysis is as follows.
Although our dynamic corrections do help to incorporate

the missing electronic polarizability into nonpolarizable models
and achieve agreement with experiment, the analysis shows
that formally the static dielectric response cannot depend on
the time scales of the system and hence on its dynamics
(therefore, e.g., Monte Carlo simulations can be used and
indeed are preferred in this case). One can argue that the static
response should not depend on the masses of the medium
particles, which define the time scales of the dynamics. This
puts into question the approach with dynamic corrections that
provided so nicely the sought agreement between the
experimental value of the total static dielectric constant that
includes electronic polarization of the medium and non-
polarizable models, which are lacking this important polar-
ization component. It appears therefore that the agreement
with experiment achieved in the dynamically corrected model
is fortuitous. Although the need to include the time-dependent
nature of the response of the medium surrounding the
simulated sample seems to be obvious and natural for most
simulations, for static properties this is not the case. If so, our
attempt to incorporate the missing electronic polarizability into
dielectric constant calculations using nonpolarizable models

cannot be considered satisfactory, and the problem appears to
be still open.

Electronic Polarization Correction. It is interesting to
mention that exactly the same problem of incorporating
electronic polarizability within a continuum approach was
already considered by Fröhlich in his classic “Theory of
Dielectrics”.38 One modification of eq 1 is eq 7.38 of his text,
reproduced in our Appendix. We then ask how the connection
with PBC should look if modified eq 1 is used. We address this
next.
If we assume that the dipoles (these are real average dipoles

of the molecule, not scaled ones as in TIPnP models) are
moving in an electronic continuum with dielectric constant εel,
as was shown by Fröhlich36, electronic polarizability modifies
eq 1 to become

( )Vk T
p

( )(2 )
3

4
3 i

0 el 0 el

0 B

2

0
∑ε ε ε ε

ε
π− +

= ⃗
(22)

It is noticed that when the total dielectric constant ε0 is large
the difference between this and the original eq 1 equation is
not substantial. However, let us now see how the same
electronic polarization effects modify eq 2.
In the analysis, we need now to assume that the RF of eq 6 is

calculated in a model of a spherical cavity with the total static
dielectric constant outside and electronic εel inside. In this
case, the RF modifies to give parameter λRF

pol instead of eq 6

2( )
2

1
RF
pol 0 el

0 el el
λ

ε ε
ε ε ε

=
−
+ (23)

and the corresponding relation between GPBC and GRF,
replacing eq 13, turns out to be as follows

G G
1 1 1

2RF PBC 0 elε ε
= +

+ (24)

After substitution into the above relation for the corrected
expression for GRF, we arrive at the following connection
between GPBC and dielectric constants

( )G
Vk T

p( )
4

3 i0 el PBC
B

2

PBC
∑ε ε π− = = ⃗

(25)

Thus, the only difference compared with eq 2 is that electronic
contribution is present explicitly. The above equation provides
the link between the polarizable and non-polarizable models.
Namely, if electronic polarization in eq 2 is formally treated as
an independent high-frequency oscillator, then the fluctuations
of this collective electronic polarizability mode give an additive
contribution to the total G-factor, which is obviously equal to
εel. The remaining “nuclear” G-factor is present explicitly in eq
25.
From the derivation, it follows that the dipoles in the G

factor here are actual unscaled full dipoles. Again, these dipoles
(the average dipoles in the system) are presumably higher than
the effective TIPnP dipoles; therefore, the problem remains
still open, as the G factor calculated with the effective dipoles
for most of the models is already sufficiently high and does not
permit any further up-scaling.
To elaborate eq 25 a bit further, we note again that in the

above equation the fluctuations of “real” unscaled dipoles are
described; however, their dynamics is calculated in the
presence of an electronic continuum, as follows from the
model. If we assume now that scaling of individual dipoles is
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given by factor of elε , the G factor of scaled effective dipoles,
i.e., that of dipoles that actually participate in MD calculations
(i.e., the actual dipoles of TIPnP models) G̃MD, is different
from that in eq 25 by a factor of εel. Therefore, in terms of
scaled dipoles, the expression for the dielectric constant
assumes the following form (PBCs are assumed)

G

,

1

0 el MD

MD MD

ε ε ε

ε

= ̃

̃ = + ̃ (26)

As we saw above, the TIPnP models produce directly G̃MD in
the range of 80−90; therefore, the additional scaling by a factor
of εel, as the above expression suggests, brings the actual
dielectric constant much above the experimental value.

■ CONCLUSIONS

Following an approach originally suggested by Neumann and
Steinhauser,19 we modified the traditional KF dielectric theory
to account for the time scale τD of dielectric response between
the spherical sample and the surrounding medium. Doing so
gives us an equation that corresponds to the original KF
equation in the limit where the dielectric relaxation time τD is
sufficiently slow but can differ drastically when τD is sufficiently
fast. Applying this modified theory to several of the most
commonly used water models gives a calculated dielectric
constant lower than what is experimentally measured. The
lower dielectric constant would be in accordance with the fact
that nonpolarizable models leave out electronic polarizability,
which scales the square dipole moment of the water model by
approximately a factor of εel = 1.78, and thus increase overall
dielectric constant of a model.
However, despite the success of improved theory with

regard to accounting for the missing electronic polarizability in
nonpolarizable models, the key assumption of the theory about
the nature of the RF acting in the sample is admittedly difficult
to rationalize without more detailed theory. Here we made a
natural intuitive assumption that the time-dependent response
of the medium should be included, which helps to resolve the
electronic polarizability issue; however, theoretically, the
standard assumption of static response appears to be the
only valid approach, but it results in a grossly overestimated
dielectric constant when electronic polarizability is taken into
account.
We then considered a modification of the theory that

includes electronic polarizability explicitly, although we treated
it only within a continuum phenomenological model. This
model does not appears to provide explanation for the scaling
nature of the effective dipoles of TIPnP models.
That the effective water models fit the experimental

dielectric constant directly appears intuitively attractive and
practical; however, one needs to remember that the charges of
the effective models are different from the actual (average)
charges of the molecules in liquids; thus Coulombic
interactions with other charges, such as Na+ or Cl−, which
are usually described with their true +/− unit charges, are set
incorrectly. Obviously, one cannot fit both correct charges and
the dielectric constant within the same fixed-charge model,
unless a more elaborate charge-scaling scheme, i.e., eq 26, is
used. However, it appears that this is not the case for TIPnP
models. We therefore conclude that to finally resolve these
issues more studies of nonpolarizable fixed-charge models are
still needed.

An alternative approach, of course, is to use polarizable
modes, where the problem does not seem to appear.

■ APPENDIX

Fro ̈hlich’s Derivation. A Discussion
Fröhlich’s argument is as follows. Suppose in a homogeneous
dielectric medium that the total (microscopically averaged)
electric field is E; then the microscopically averaged polar-
ization of a unit volume is
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(27)

where we imagine a unit volume sample, dipoles in the sample
are p⃗i, and the averaging on the right-hand side is over phase-
space configurations (Γ) whose energies are described by
Hamiltonian H0 and by interaction of the dipoles with the
electric “cavity” field G⃗, which is not the same as the total
electric field E⃗ as total electric field already includes that of the
polarized dipoles of the sample p⃗i. Thus, we need to establish
the relation between G⃗ and E⃗. In a linear approximation (weak
fields), obviously, G⃗and E⃗ are linearly related, i.e.

G Eκ= (28)

so that the following expansion of the Boltzmann’s exponent in
small G, assuming no polarization in the absence of the field,
gives the right-hand side linearly proportional to E, and after
cancellation of E on both sides, one obtains the relation
between the dielectric constant and the quadratic fluctuation of
the total dipole moment of the sample

( )Vk T
p

1 4
3 i

B

2

0
∑ε

κ
π− = ⃗

(29)

where the averaging on the right-hand side is over Hamiltonian
H0 of the dipoles of the sample, now of volume V; the factor of
3 is due to dimensionality (3D) of averaging, and the factor of
κ is from the above relation between G and E.
The factor of κ is determined as follows. The total electric

field E in the sample consists of the following contributions:
(1) “cavity” field G, (2) the field of the polarized dipoles of the
sample, and (3) RF of the polarized dielectric around the
sample by the dipole of the sample. If we imagine that the
sample is spherical, then the last two contributions are easy to
evaluate, and one finds that
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= + − −
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=
+ (30)

The first term on the right-hand side that modifies E is the field
of the homogeneously polarized sphere (inside of the sphere; it
is directed opposite of E; thus we add it to get G), and the
second term is the RF inside of the sample of the polarized
dielectric around the spherical sample (it is directed along E;
thus we subtract it). Thus, the factor is κ = 3ε/2ε + 1, and we
find the Fröhlich relation
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4
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0
∑ε ε

ε
π− + = ⃗

(31)

which connects quadratic fluctuations of the dipole moment of
the sample to the dielectric constant of the material.
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As was shown by Fröhlich in his classic text “Theory of
Dielectrics”36, electronic polarizability modifies the above
expression to become

( )Vk T
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( )(2 )
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4
3 i

el el
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2

0
∑ε ε ε ε

ε
π− +

= ⃗
(32)

It is noticed that when the dielectric constant is large the
difference between this and the previous equation is not that
important.
Computer simulations can now be used to find the latter,

and thus, the dielectric constant can be determined. As the
dielectric constant of the isotropic material cannot depend on
the sample shape, provided that it is large enough, in
simulations one can use an arbitrary shaped sample, although
the derivation above is based on the spherical assumption.
However, there still remains one subtle and crucial point in

the above expression that needs to be clarified. Namely, what
actually is H0 over which we are averaging the dipole
fluctuations of the sample? H0 determines the dynamics of
the dipoles and thus is crucial for simulations.
According to the construct of the method, the sample is part

of the infinite homogeneous material; thus, the molecules and
dipoles of the sample interact not only between themselves but
also with the surrounding medium, which is not simulated
explicitly. This is a crucial point of the method as the
interaction of the sample with the rest of the medium is not
small and is in fact of the same order as interactions between
the molecules within the sample. Qualitatively, the interaction
of the sample with the medium is divided into two parts; first,
there is a boundary effect, which involves short-range
interactions and that can be neglected if sample is big enough,
and second, there is polarization of the medium outside of the
sample, which produces RF with which the dipoles of the
sample interact. The surrounding medium effect therefore
should be implicitly included in H0. This is a fundamental
feature of the model as we are trying to write the Hamiltonian
of the sample that is not isolated but part of the infinite
medium with strong long-range electrostatic interaction. We
focus now on this second polarization interaction, neglecting
other boundary effects, assuming that they are small.
The polarization interaction of the sample dipoles with the

surrounding medium is subtle as the medium has the same
unknown dielectric constant that we are trying to determine;
thus, the procedure should be self-consistent. Moreover, the
dielectric response depends on the time scale of the
perturbation: for high frequencies and short time scales, the
dielectric response of the medium is only due to electronic
polarization, which corresponds to the dielectric constant at
high frequencies, ε∞ ≡ εel; for the long-time scale, the static
dielectric response occurs with static dielectric constant ε0.
Thus, the time scale of dipole fluctuations of the sample will
determine the response of the surrounding medium. This of
course only means that the dielectric constant of the sample is
frequency-dependent ε(ω) and in a rigorous procedure should
be self-consistently determined as such.19

On the other hand, one can argue that because the static
dielectric constant is evaluated, the mean polarization of the
medium should occur infinitely slowly; thus, the external
medium would respond with the static dielectric constant ε0,
and thus, the external dielectric ε0 should be assumed for the
medium surrounding the sample. It appears that qualitatively
and intuitively one can argue both ways.

All of these uncertainties are due to the fact that we are
trying to describe dynamics of a sample that is strongly coupled
to the external medium; naturally, this cannot be done exactly,
and therefore, some model assumptions have to be introduced.
The idea of self-consistency is natural and simple and stems
from the fact that the medium is homogeneous and that our
sample is the same as the surrounding medium. However, the
nature of the ef fective Hamiltonian of the sample H0 is not that
clear and thus is a subject of approximations, which in turn
depend on the nature of the question that we ask.
It is appropriate therefore to call the effective Hamiltonian of

the sample H0 the Kirkwood−Fröhlich (KF) Hamiltonian,
HKF, and write for corresponding averaging ⟨···⟩KF, as we did in
the main text.
It appears that, at least in linear approximation, the average

of the square of the dipole moment is calculated with the
Hamiltonian H0 that is not restricted by the nature of the
external perturbation but rather by the dynamical nature of the
sample itself; naturally, the dynamics of the sample, not the
time scale of external perturbation, will determine the effective
interaction with the surrounding medium. Thus, it is natural to
think that the response should depend on the time scale of the
dynamics of the sample dipoles.
On the other hand, formally, one can argue that the

corresponding conjugated momenta of the dipoles in the
integral (eq 27) (where dΓ involves both dipoles, i.e.,
generalized coordinates, and their conjugated momenta) will
be integrated out, and after that, only configurations of dipoles
with their energies will remain. In this case, we tacitly assume a
formal infinite lifetime of the configurations or infinite time
scale of external perturbation, and therefore, the static
dielectric response of the surrounding medium will determine
the energy of configurations over which we average dipoles of
the sample. However, this is only when we assume that the
surrounding medium effect does not depend on the conjugated
momenta of the sample dipoles, which is obviously not true as
the medium response depends on the time scale of motion of
the sample dipoles. Formally, it means that the effective
interaction of the dipoles in the sample depends on their
conjugated momenta, and the seemingly simple “integrating
out” is not possible. On the other hand, one can assume that
the integration out of the conjugated momenta is done before
the separation of the sample and the rest of the medium is
done. Formally, it is not clear which procedure actually should
be employed. However, it is clear from more general
considerations that the static properties of the system, such
as the static dielectric constant, should not depend on
dynamics.
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