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ABSTRACT
A survey of published literature reveals a difference in the density of amorphous and crystalline solids (organic and inorganic) on the order
of 10%–15%, whereas for metallic alloys, it is found to be typically less than 5%. Standard geometric models of atomic packing can account
for the polymeric and inorganic glasses without requiring changes in interatomic separations (bond lengths). By contrast, the relatively small
difference in density between crystalline and glassy metals (and metallic alloys) implies variations in interatomic separations due to merging
orbitals giving rise to reduced atomic volumes. To test this hypothesis, quantum density functional theory computations were carried out on
ordered and irregular clusters of aluminum. The results point to decreasing interatomic distances with decreasing coordination, from which
one can deduce that the geometrical method of random hard sphere packing significantly underestimates the densities of amorphous metallic
alloys.

https://doi.org/10.1063/1.5113733., s

INTRODUCTION

The density of any substance is given by the ratio of its mass
divided by volume, ρ = m/V. For a given amount of substance, the
mass is fixed; however, the volume can vary depending on pressure,
temperature, atomic arrangement, and chemical environment. In
the following, we consider pressure and temperature as constant and
focus our attention on the atomic arrangements and the chemistry
of bonding.

As a rule, the density of an amorphous solid is expected to be
less than that of its crystalline form, i.e., ρa < ρc. This assertion is
based on the relative atomic packing fractions,

ρa = (pfa/pfc) × ρc. (1)

Equation (1) is derived from packings of hard spheres. The packing
fraction of the crystalline form is calculated from the unit cell and
the assumption of hard radius of the atoms. The packing fraction of
the amorphous form is taken to be that found for random packing
of hard spheres, which is typically on the order of 0.63. For exam-
ple, the crystalline unit cell of pure aluminum is fcc with an atomic

packing fraction, pf c = 0.74. Aluminum density at standard pres-
sure and temperature is 2.70 g/cm3, based on the atomic radius of
0.143 nm, and a corresponding atomic volume = 0.0166 nm3/atom.
Assuming the hard sphere model for amorphous aluminum and
using the same atomic radius, the predicted density of amorphous
aluminum should be ρa = (0.63/0.74) × 2.70 = 2.30 g/cm3, a change
of approximately −14.5%.

Comparing known densities of solids with crystalline and
amorphous forms supports the above expectation, but also reveals
a noticeable trend for the different classes of solids, as shown in
Table I. In general, the relative variations in density are small for
the first class (metallic), but are significantly larger for the next two
classes (ionic and covalent), as pointed out recently by Ref. 20. They
also make the point that the fractional molar volume difference in
glass forming metal alloys is significantly less than the hard sphere
of the same radius value.

The concept of representing atoms by spheres has evolved grad-
ually and over a long period of time. By the early 17th century,
Joannis Kepler drew a hexagonal close packing of spheres to illus-
trate a compact solid. The solid sphere model was developed by
John Dalton in the early 19th century and formed the basis for
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TABLE I. Densities of some crystalline and amorphous solids at standard temperature and pressure. h = Stachurski (2017), unpubl. results. PE = Polyethylene; iso-PP = isotactic
polypropylene.

Crystalline solids Density (g/cm3) Amorphous solids Density (g/cm3) Relative changea (%) References

Crystal. Al (fcc) 2.70 Amor. Al 2.52−2.55 −5.61 h
Crystal. Cu (fcc) 8.96 Amor. Cu 8.48 −5.3 7
Crystal. Si (dc) 2.329 Amorph. Si 2.294 −1.5 61
Crystal. Zr37Cu63 7.80 Amor. Zr37Cu63 7.68 −1.54 37
Crystal. Zr50Cu50 7.40 Amor. Zr50Cu50 7.30 −1.41 37
Crystal. Ni3Nb 8.95 Amor. Ni62Nb38 8.72 −1.40 6,23

Cristobalite 2.55 Silica glass 2.20 −13.7 67
α-alumina 3.95 Amor. Al2O3 (h.d.) 3.30 −16.4 27
Corundum 4.02 Amor. Al2O3 (h.d.) 3.30 −19.9 50
Crystal. As2Se3 5.10 Glassy As2Se3 4.62 −9.42 67
Crystal. InSb 5.78 Glassy InSb 6.10 +5.54 32

Crystal. PE 1.00 Amor. PE 0.86 −14.4 25
Crystal. iso-PP 0.95 Amor. iso-PP 0.86 −9.61 47
Crystal. Nylon 66 1.22 Amor. Nylon 66 1.07 −12.3 55

aRelative change in density: Δρ = (ρa − ρc)/ρc .

representations of the structure of crystalline solids and for calcula-
tions of packing density. In the 20th century, with the identification
of the amorphous structure of solids, one of the earliest analyses of
the density of noncrystalline solids was published by Cargill,11 who
compared the random arrangements of hard close packed spheres
with those of the amorphous Ni-P alloys. His analysis showed that
the atomic arrangements in noncrystalline Ni-P alloys should differ
only slightly from those in a dense random packing of spheres, and
the small difference observed between packing densities of Ni-P and
the corresponding hard sphere model was ∼5%. A broader view of
the structural differences in atomic arrangements was described in
Ref. 54.

Historically, despite its popularity, the simplified hard sphere
model had difficulty to account for some seemingly counterintuitive
observations in both crystalline and amorphous systems. For exam-
ple, in Al-Li alloys, increasing Li concentration increases the elastic
modulus even though the Young’s modulus of Li (14 GPa) is much
smaller than that of Al (91 GPa).43 Recently, by performing accu-
rate density functional theory (DFT) simulation, Alam and Johnson
achieved results in fine agreement with experiments in terms of
structural properties as well as energetics.1 Another example con-
cerns Cr-doped GaN. Experimentally, adding a larger Cr substitu-
tional dopant systematically decreases the lattice constants.51 DFT
simulations show this to be due to the formation of embedded Cr
clusters with the Cr-Cr distances contracted by up to 17%.16 A gen-
eral interpretation of these successes lies in the many-body quan-
tum effects which can be described satisfactorily by density func-
tional theory (DFT) in terms of both the atomic structure as well
as the electronic structure,15 but it was totally overlooked in the
hard sphere model. Such effects are particularly significant for sys-
tems involving mixed valency and site preference.2,3 Below, we will
show that it is also important in amorphous elemental systems such
as Al.

The atomic arrangements in metallic and metalloid solids have
long been the subject of numerous investigations, for example, Refs.
13, 21, 26, 40, 46, and 59. In general, the small density differences
between the metallic glasses and crystalline solids are accredited to
the assertion that a degree of short-range order (SRO) and medium-
range order (MRO) exist in the amorphous solid, which increases
the overall physical density of the amorphous solid toward that
of the crystalline solid. This will be referred to as the SRO/MRO
hypothesis.

By contrast, the explanation proposed in this paper is based on
the conjecture that the atomic arrangement is essentially random
but the consequent reduction in atomic coordination, resulting from
random packing, leads to reduced interatomic separations (RIS),
thus allowing for higher overall density. This will be referred to as
the RIS hypothesis.

Physical reasons and evidence are presented herein to show
that the SRO/MRO hypothesis is erroneous. The RIS hypotheses
are tested by means of the first principles density functional the-
ory (DFT) method, by computations on pure aluminum clusters of
varying coordination in the first shell. Compared to predictions from
Eq. (1), the DFT results show that the interatomic spacing decreases
with the reduced coordination number around the central atom,
thus leading to a reduced atomic volume (increased packing frac-
tion), hence an increased density toward that of the corresponding
crystalline form.

DFT COMPUTATIONS
Amorphous aluminum clusters

At present, no physical sample of pure amorphous aluminum
has been prepared in a sufficient quantity to determine the physi-
cal density by a direct method. Instead, computer simulated clusters
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of randomly packed aluminum atoms have been subjected to DFT
computations and analysis in order to test the RIS hypothesis. To this
end, we performed all-electron DFT calculations on clusters of alu-
minum using the generalized gradient approximation (GGA)45 with
the DMol3 program package.18,19 The wave functions were expanded
in terms of a double-numerical quality basis set, with an atomic
real-space cut-off equal to 12.75 bohrs for Al.

It is conjectured that rearranging the atomic packing from crys-
talline to amorphous should result in a change in atomic volumes in
clusters of pure aluminum. For this purpose, a large random pack-
ing of aluminum atoms (>106) was created by the the ideal amor-
phous solid (IAS) method described elsewhere.59 In this packing
of hard spheres, the distance between nearest neighbors was set to
0.2860 nm, the closest separation between two aluminum atoms in

FIG. 1. The studied random clusters of pure aluminum, each comprising 101 atoms extracted from a large IAS amorphous packing. In each cluster, the central atom is colored
green and the first shell atoms are colored red: (a) 9 atoms in the first shell and [(b), (c), and (d)] 7 atoms in the first shell. The red atoms are randomly positioned around the
central atom, but initially, all are at a fixed distance of 0.2860 nm from the center.
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TABLE II. DFT calculated initial (unrelaxed) and relaxed distances, atomic volume, and Mulliken charge of the central atom for the randomly selected clusters (a)–(d), as shown
in Fig. 1.

Initial dist. Initial vol. Relaxed bond dist. Relaxed vol.
Cluster Atom coord. (nm) (nm3/at.) Initial Mull.charge (e) (nm) (nm3/at.) Relaxed Mull.

(a) 9 0.2860 0.017 014 −0.029 0.2722, 0.2790 0.016 653 −0.071
0.2810, 0.2837
0.2838, 0.2851
0.2881, 0.2901
0.3154

(b) 7 0.2860 0.017 854 −0.016 0.2776, 0.2799 0.017 276 −0.034
0.2814, 0.2819
0.2830, 0.2854
0.2929

(c) 7 0.2860 0.017 567 0.001 0.2795, 0.2803 0.017 065 −0.004
0.2811, 0.2841
0.2854, 0.2861
0.2909

(d) 7 0.2860 0.017 458 −0.078 0.2616, 0.2655 0.016 886 −0.219
0.2728, 0.2771
0.274, 0.2796
0.2846

the fcc lattice. The bulk packing fraction of this model amorphous
solid was 0.63 ± 0.005.

Next, several clusters containing 101 atoms have been extracted
from the amorphous packing, with a chosen atom as the center
of the cluster, and surrounded by the other 100 aluminum atoms
at random positions. Convergence tests reveal that the estimated
error of the calculated central bond lengths is ∼0.001 nm; depend-
ing on the cluster, each central atom has different configurations of
surrounding atoms, as shown in Fig. 1.

Due to the nonsymmetrical nature of amorphous packing,
relaxation during DFT computations leads to the initial first near-
est neighbor bonds, initially of the same length, to be no longer
equal (Table II column 6). Focusing on the local structures (central

part of the clusters), most bond lengths are shortened, but some
are elongated. Significantly, the DFT results demonstrate that the
interstitial space values are all decreased after considering the quan-
tum interatomic interaction. Such a volume shrinkage is inhomo-
geneous, depending on the surrounding environment. Collectively,
the DFT results demonstrate that quantum effects result in a higher
mass density than that of the amorphous aluminum system modeled
on packing of hard spheres.

Crystalline aluminum clusters

To corroborate the main results for the amorphous clusters,
we have carried out DFT computations on fcc, bcc, and simple

FIG. 2. (a) Fragment of fcc crystalline aluminum, (b) interatomic distances from the central atom, (c) the central aluminum atom (red), 2nd shell 12 (yellow) atoms, and (d)
3rd shell 6 (pink) atoms, 4th shell 24 (blue) atoms.
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TABLE III. Calculated data for bulk crystalline Al by the DFT-GGA method.

Coord. Bond dist. Volume/atom Density Cohes. energy
System Number (nm) (nm3/atom) (g/cm3) (eV/atom) Mulliken Charge

Al-fcc 12 0.2862 0.016 552 2.707 3.342 0
Al-bcc 8 0.2802 0.016 012 2.649 3.246 0
Al-cubic 6 0.2722 0.020 149 2.224 2.971 0

TABLE IV. Results of DFT computations on three ordered clusters shown in Fig. 2.

case system 1st dNN (nm) 2nd dNN (nm) 3rd dNN (nm)

Reference Bulk fcc 0.2857 0.4040 0.4948
(i) Fully relaxed cluster 0.2810 0.4090 0.4804
(ii) Fix 2nd and 3rd cluster 0.2864 0.4040 0.4948
(iii) Fix 3rd cluster 0.2867 0.4095 0.4948

cubic clusters of aluminum atoms, with the expectation that even
in ordered structures, interatomic spacings will decrease if the first-
shell coordination is reduced, as it is in the sequence: fcc → bcc
→ sc. Schematic drawings of the fcc clusters are shown in Fig. 2. The
calculated lattice constant from DFT computations is 0.4040 nm,
compared with the experimental value of 0.4049 nm.66 The com-
puted first nearest neighbor distance (dNN) is 0.2857 nm, the second
is 0.4040 nm, and the third is 0.4948 nm (Table III), in good agree-
ment with experimental values, namely, 0.2863 nm, 0.4049 nm, and
0.4961 nm, respectively. The DFT results in Table IV (the Appendix)
clearly show that the first nearest neighbor distances decrease with
decreasing shell coordination number, thus supporting the observa-
tions on the random clusters.

DISCUSSION
Densities of metallic and metalloid solids
Aluminum

Using volume-temperature data from a number of sources,5,31,36

one can predict the likely density of amorphous aluminum as 2.52–
2.55 × 103 kg/m3, as given in Table I. The relative density reduction
of around −5.6% is in stark contrast with the value of −14.5% pre-
dicted by Eq. (1). A similar result will be found for other pure fcc
metals, for example, for pure copper, the change is ∼−4.5%.8

Computations of the quantum interatomic interactions in all
of the random clusters used here lead to local volumetric shrinkage,
although in principle one cannot exclude the possibility of volumet-
ric expansion. Geometric relaxation further enhances the electron
charge inhomogeneity. Thus, DFT calculations clearly show that
quantum interatomic interactions are important in accounting for
the significant deviation of mass density between the simple hard
sphere packing model and the DFT derived model. It is also inter-
esting to observe that due to the asymmetry of atomic positions,
the atomic Milliken charge values are not zero (as found in the
crystalline Al).

Douglass et al.20 found that the effective atomic radii in the
amorphous state become increasingly smaller than those in the crys-
tal as the softness of the particles increases, expressed in terms of
Morse potential.

Zr50Cu50 alloy

Now, consider the Zr50Cu50 alloy. As a crystalline solid, this
alloy has two martensitic monoclinic structures: one with a mea-
sured density of 7.39 g/cm3 and the other 7.40 g/cm3, and unit
cell volumes, 69.3 Å3 and 69.5 Å3, respectively.68 It comprises 2
(Zr-Cu) atomic pairs per unit cell. Taking rZr = 0.155 nm and
rCu = 0.125 nm, the estimated volume packing fraction is ∼0.71.
Using Eq. (1) with the appropriate radii for Zr and Cu atoms
and the amorphous packing density of pf a = 0.63, the predicted
density of the amorphous alloy is 6.59 g/cm3, a relative change
of approximately −11%. However, the measured density of this
amorphous alloy has been reported as 7.30 g/cm3 by Ref. 37,
a relative change close to −1.4%, in large contrast to the above
value.

The amorphous nature of the Zr50Cu50 alloy has been observed
to conform to the expected x-ray scattering pattern for glassy met-
als.35 This implies random packing of atoms and consequent topol-
ogy; for random packing of atoms of two different sizes, the vol-
ume fraction varies from the value of 0.63, but not much, as shown
in Ref. 44, and the final conclusion is the same. The geometrical
method of random hard sphere packing fails to predict the high
density of this amorphous metallic alloy relative to its crystalline
form. It is conjectured that the quantum interatomic interactions
in this alloy also play a role in reducing interatomic spacings, mak-
ing the alloy more dense than that predicted by the geometrical
method.

Similar arguments apply to other alloys of this system62 for
which there are experimental data that confirm the variation in den-
sity of between −1% and −3%, as shown in Fig. 3(b). This is also true
for many other metallic alloys, as reported by Refs. 30 and 65.
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FIG. 3. (a) A small variation of atomic
packing with a wide range of compo-
sition for the Cu-Zr amorphous alloy.
Reproduced with permission from Park
et al., Scr. Mater. 57, 805 (2007). Copy-
right 2007 Elsevier. (b) Measured relative
densities of amorphous and crystalline
CuZr alloys. Reproduced with permis-
sion from Li et al., Science 322, 1816
(2008). Copyright 2008 American Asso-
ciation for the Advancement of Science.

Ni3Nb alloy

The Ni-Nb alloy system has two intermetallic compounds:
β-phase (Nb7Ni6) and γ-phase (Ni3Nb), with densities 8.74 g/cm342

and 8.463 g/cm3,23 respectively. An alloy of the bulk composition
Ni62Nb38 would have a density of 8.60 g/cm3 (calculated by the phase
lever rule). The measured density of an amorphous alloy of the same
composition is 8.72 g/cm3,6 giving a relative change in density of
−1.40%, as shown in Table I.

The crystal structure of the γ-phase is orthorhombic (space
group Pmmn), with unit cell dimensions taken as: a = 0.5125 nm,
b = 0.4261 nm, and c = 0.4538 nm, containing 6 Ni and 2 Nb atoms.10

The crystal structure is not closed packed, but rather forming two
similar (hollow) clusters of atoms, one of which is delineated in
Fig. 4(a). The estimated volume packing fraction for this structure
is 0.69, with assumed radii rNi = 0.124 nm and rNb = 0.130 nm.
The electronic structure of this alloy is dominated by the hybridiza-
tion between the Ni d3 orbital and the Nb d3 orbital, giving the
strong negative values of the formation enthalpy. The β-phase is a

complex intermetallic compound whose characteristic features are
high values of coordination numbers (CN) and mixed occupancy of
sublattices by the Nb- and Ni-atoms with the lack of a definite stoi-
chiometry. It is a rhombohedral structure with 13 atoms distributed
over 5 lattice sites with CN ranging from 12 to 16.14 The estimated
volume packing fraction is ∼0.74.

For the amorphous alloy, Ni62Nb38, one should expect a ran-
domly packed atomic structure as evidenced by the shape of the
x-ray and neutron scattering structure factors [Fig. 4(c)]. Thus,
taking its packing fraction as ∼0.63, the theoretical amorphous
density of this alloy is predicted by the geometrical packing ratio
method as

ρa.alloy = (
pfa
pfc
)

β
(vf × ρ)β + (

pfa
pfc
)

γ
(vf × ρ)γ (2)

= (0.63/0.74)(0.59 × 8.74)

+ (0.63/0.69)(0.41 × 8.46) = 7.34 g/cm3, (3)

FIG. 4. (a) An orthorhombic crystal unit cell of the Ni3Nb compound with 6 Ni and 2 Nb atoms per cell: Ni—blue, Nb—green. One hollow cluster outlined by line segments.
Adapted with permission from Cao et al., Comput. Mater. Sci. 77, 208 (2013). Copyright 2013 Elsevier. (b) Crystal unit cell of the Nb6Ni7 compound with Ni—gray, Nb—gold.
Adapted with permission from P. Nash and A. Nash Bull. Alloy Phase Diagrams 7, 124 (2013). Copyright 2013 Elsevier. (c) X-ray and neutron static structure factor for Ni-Nb
amorphous alloys showing a broad scattering peak characteristic of amorphous structures with random packing of atoms. Reproduced with permission from Svab et al.,
J. Non-Cryst. Solids 46, 125 (1981). Copyright 1981 Elsevier.
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much lower than that reported by Ref. 6. In Eq. (3), vf means vol-
ume fraction. Interestingly, a density of 7.70 g/cm3 was reported by
Ref. 17 for a hard sphere computer simulated alloy of the Ni71Nb29
alloy, which is close to the composition and density predicted by
Eq. (3). In any case, the difference cannot be reconciled simply by
the geometrical method.

Svab et al.57 deduced from x-ray and neutron scattering stud-
ies of the amorphous Ni60Nb40 alloy that the coordination num-
bers were 11.8 around the Ni atom and 12.2 around the Nb atom.
These numbers were calculated from the areas of the partial scatter-
ing peaks and therefore give the average coordination around atoms
represented as soft spheres, which would be similar to Voronoi cal-
culations of computer simulated structures using the radical tes-
sellation method of Ref. 4 In such studies, the average coordina-
tion number is typically 14–16, indicating perhaps a lower density
packing.

A major source of uncertainty in these calculations is the
selected size of atoms. Nevertheless, one must observe that the
geometrical method, based on packing hard sphere models of
atoms, cannot account for the relatively small difference in densi-
ties between the crystalline and glassy forms of this metallic alloy.
Indeed, it is concluded that electron density changes associated
with random packing are responsible for the altered interatomic
distances.

Polymeric solids

The so-called saturated polymers, characterized by covalent
bonding within the chain structure with no chemical functionality
in side groups, and van der Waals bonding between the chains are
good examples for applying hard sphere models to packing and for
conforming to the general rule on densities based on packing of hard
spheres.

For polymethylene, a -[CH2]- monomeric unit can be approx-
imated as a sphere (Fig. 5). Thus, a possible simplified model for
an ideal amorphous polymeric solid is as follows: Consider N ran-
domly packed equal sized spheres, each sphere representing the
monomer (where N is a large number). Make a chain of touching
spheres: chose one sphere as the starting point and thread it with
one of its touching neighbors. Next, thread the second sphere at
random with one of its touching neighbors, except the one already
joined to. Continue in this manner along the three dimensional self-
avoiding random walk (SARW) until a chain of n − 1 links is formed.
Next, choose another (unattached) starting sphere and, following
the above process, construct another chain of n spheres. Repeat
the process until (N/n) chains are formed. Since N ≫ n, there are
many ways to form the chains, and therefore, there exists a finite
probability that it is possible to form (N/n) chains without violat-
ing the self-avoiding random walk and without any free sphere(s)
left over. This structure of linear freely joined chains constitutes an
ideal polymeric amorphous solid.53 According to this model, the
packing fraction should be pf a = 0.63 ± 0.01. Given the density
of perfectly crystalline polyethylene52 as ρc = 1.00 g/cm3, the per-
fectly amorphous polyethylene should have a density of ρa = 1.00
× (0.63/0.74) = 0.85 g/cm3, a change of ∼−15%. The experimental
value of density is 0.87 g/cm3, measured on a sequence of semicrys-
talline polyethylenes with diminishing crystallinity; therefore, a good
agreement is obtained.

FIG. 5. (a) A C2H4 monomer can be approximated by a sphere, (b) unit cell of crys-
talline polyethylene, and (c) a fragment of the polyethylene chain with atomic sizes
corresponding to realistic atomic dimensions. Reproduced with permission from
Muller et al., J. Chem. Phys. 114, 9764 (2001). Copy right 2001 AIP Publishing
LLC.
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The above model of touching sphere chains was corrobo-
rated by a separate study of chains based on jointed spheres by
Ref. 34, who have shown that the hard sphere chains reach their
maximally jammed state at the same volume fraction as the pack-
ing of single spheres, i.e., 0.638 ± 0.004, regardless of the chain
length.

Surprisingly, a study of polymeric chains based on connected
spheres by Ref. 69 has found that the packing density reduces to as
low as ∼0.4 with increasing length of polymer chains, which would
give amorphous density of polyethylene as 0.54 g/cm3, an unrealis-
tically low value. They have taken into account constraints on bond
flexing, and the effect of chain ends, and concluded that long linear
chains should pack less densely than short linear chains. Their model
can be understood as the jamming of semirigid chains when com-
pacted, and it suggests that the molecular geometry can influence
the structure of condensed matter.

The unit cell of crystalline polyethylene is orthorhombic with
dimensions a = 0.733, b = 0.493, and c = 0.256 nm and contains 4
[CH2] monomers. The carbon atoms along the chain can be rep-
resented as interpenetrating spheres of the (van der Waals) radius,
rC = 0.170 nm with a C–C distance of 0.154 nm and a C–C–C
bond angle, α = 114○ in a planar zig-zag configuration. Taking the
H-atom’s van der Waals radius as rH = 0.117 nm and the interpen-
etrated distance H–C as 0.109 nm, one can calculate the occupied
volume fraction as pf = 0.72. On this basis, the predicted density of
amorphous polyethylene should be (0.63/0.72) × 1.00 = 0.875 g/cm3.

Accurate atomistic computer modeling of polymers was pio-
neered by Theodorou and Suter. A recent realistic model to rep-
resent the amorphous structure of polymers has been proposed by
Ref. 41, based on computer simulated atomistic models of single
polymer chains with the experimentally derived rotational isomeric
state. In their model, atoms are represented by overlapping hard
spheres of C-atoms and H-atoms to appropriate interatomic dis-
tances of covalent bonding, with a corresponding distribution of
C–C bond torsional angles. Their result for amorphous polyethylene
density is 0.892 g/cm3. For comparison, one should take the mea-
sured density of highly crystalline (extended chain) polyethylene as
1.00 g/cm3, and using this value calculate the reduction in density
as (0.892/1.00) − 1 = −1.08 or ∼−11%, a value close to that found in
Table I.

Analysis of other polymers which have both amorphous and
crystalline forms confirms the general trend of −10% to 15% relative
difference in their densities. Therefore, one can conclude that the
atomistic models for polymers as proposed by Ref. 41 are a good
representation of the packing arrangements in organic (saturated
bond) polymers. Consequently, the law of simple mixtures, express-
ing the proportionality of density to crystalline volume fraction, is
well proven for semicrystalline polymers. There is no need to invoke
the SRO/MRO hypothesis, or the RIS hypothesis.

Ionic solids

For many compounds, the model of ions as hard spheres does
not reproduce the distance between ions, dmx to the accuracy with
which it can be measured in crystals. One can improve the model
by representing ions as “soft spheres” that overlap in the crystal.
Because the ions overlap, their separation in the crystal will be less
than the sum of their soft-sphere radii.33

The concept of ionic radii is based on the assumption of a
spherical ion shape. However, from a group-theoretical point of
view, the assumption is only justified for ions that reside on high-
symmetry crystal lattice sites; chalcogen ions have to be modeled
by ellipsoidal charge distributions with different radii along the
symmetry axis and perpendicular to it.

The chalcogenide glasses present a more complex problem of
predicting atomic arrangements and interatomic distances. This was
pointed out in a previous publication.24

SRO/MRO hypothesis in metallic alloys

This hypothesis assumes that nanoclusters and microclusters
of ordered atomic arrangements are present in amorphous metallic
alloys, and that their presence increases the density toward the crys-
talline value. This implies the law of mixtures (based on the Lewis
law for additivity of volumes): ρalloy = vaρa + vcρc, where va and
vc represent the volume fractions of the amorphous and crystalline
phase volume fractions, respectively.

Experimental evidence in favor of the hypothesis is: (i) SRO and
MRO usually develop as the quenched bulk metallic glasses (BMG)
are annealed;63,64 the published literature in the presence of the SRO
and MRO in bulk metallic glasses is extensive, exemplified by Refs.
9, 28, 38, 39, 49, 56, and 63, (ii) presence of the first sharp diffraction
peak is an indication of the MRO,13,22,48 and (iii) the existence of
frozen-in stresses.60

The evidence against this hypothesis is that substantial volume
fractions of the ordered regions are required to increase the den-
sity close to the experimentally observed values, at which point the
solid is no longer an amorphous glass but rather a semicrystalline
solid. For example, if the ideal amorphous density of Zr37Cu63 is
7.80 × (0.63/0.74) ∼ 6.64 g/cm3, then the required volume fraction
of fcc type clusters to raise the density of the amorphous alloy from
6.64 g/cm3 to 7.68 g/cm3 is vc ∼ 0.9, i.e., ∼90%, as noted above. Sim-
ilar results are found for the other metallic glasses. Also, if regions
of the SRO and MRO of significant extent exist, then the corre-
sponding Braggs’ XRD peaks should be observed. Experimentally,
no sharp diffraction peaks are observed in metallic glasses [Fig. 6(a)]
until they are annealed and reach a significant volume fraction of the
ordered clusters, as shown in Fig. 6(b).

The RIS hypothesis for metallic alloys

The variation of interatomic distances under the influence of a
given neighborhood chemistry has been observed and quantified by
Ref. 12 for a Zr-Cu system with small Al additions. They deduced
changes in the interatomic spacing between 3.5% and 2% on addi-
tion of 8–15 at. % Al, derived from measurements of elastic con-
stants. One can infer from these results that the solute Al atoms in
the randomly packed structure act as electron donors to Zr atoms,
thus reducing ionization energy in the local clusters and causing a
decrease in the interatomic distance and therefore a corresponding
increase in density.

A self-evident inference from the above observations is that
interatomic separations in amorphous metallic alloys are reduced
compared to those found in their crystalline forms, thus giving
densities that are higher than those expected from the geometrical
hard sphere (same occupied volume) packing model predictions.
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FIG. 6. X-ray diffraction inten-
sities obtained from the
Zr64.13Cu15.75Ni10.12Al10 alloy at
room temperature. (a) For the as-cast
amorphous glassy state. (b) For the
semicrystalline state after annealing
at 870 K. Synchrotron radiation,
λ = 0.020 728 nm (GW—unpublished
results).

The DFT computations described above for aluminum clusters
corroborate this effect.

CONCLUSIONS

• Evidence against the proposition that existence of localized
SRO/MRO domains is necessary for the closeness in the
density of metallic glasses and their crystalline counterparts
is presented. We acknowledge that such domains likely do
exist in many glasses but our calculations demonstrate that
they are not a prerequisite for the structure to achieve the
correct density values. Moreover, we suggest that deviations
from overall randomness may occur and that the overall
average bond-lengths be preserved to yield the correct den-
sity. One must accept that the amorphous structure of real
metallic glasses is based predominantly on random packing
of atoms, with minimal presence of ordered clusters. Con-
sequently, this hypothesis should be dismissed as invalid. Of
course, this does not preclude the presence of ordered clus-
ters in amorphous solids,29,38,49 which should be described
as faults (defects) within random packing.59

• DFT computations on aluminum clusters confirm the relax-
ation of the bonds with reduced coordination, and therefore,
a reduction in the atomic Voronoi volume. It is conjectured
that this effect accounts for the density of amorphous metals
being so close to that of the corresponding crystalline forms.
This evidence supports the RIS hypothesis.

• The density of covalent (saturated) amorphous solids is pre-
dicted adequately by the method of random packing of
spheres. The bond lengths do not depend on the atomic
arrangements since the electronic structure is tightly bound
and not affected by coordination. The RIS hypothesis does
not apply to these solids.

• There is no general rule for the density of amorphous solids
with ionic bonds, other than the five Pauling rules on crystal
structures. Each ionic system must be considered individu-
ally, as examples of positive and negative density variations
occur (see Table I).
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APPENDIX: DETAILS OF DTF APPROACH
TO fcc CLUSTER

For the 43-atom fcc cluster in Fig. 2, three different treatments
were applied for atomic relaxation: (i) “Fully relaxed cluster” means
in vacuum with the corresponding 1st dNN , 2nd dNN , and 3rd dNN
distances all changed from those of the bulk; (ii) “fix 2nd and 3rd
clusters” means fixed 2nd and 3rd nearest neighbors as in bulk fcc
(thus as 0.4040 nm and 0.4948 nm) and only relaxed the central 13
Al atoms, the corresponding 1st dNN is now 0.2864 nm; (iii) “fix
the 3rd cluster,” only the 3rd dNN atoms are fixed, and relaxed the
13 + 6 atoms; thus, both the 1st dNN and 2nd dNN distances change.
The results are summarized in Table IV.

Focusing on the 1st dNN values, one can see that case (ii) gives
a better result than case (iii), but it is still a little far from the bulk.
One can envisage that for a very big cluster model, if only the cen-
tral part is relaxed, these dNN values should converge to the bulk
value.

Therefore, one can expect that the larger the size of the cluster,
the more accurate results are obtained. Here, one has to balance the
cost/efficiency and accuracy. For the amorphous clusters, we have
used much larger clusters, 100 atoms, and only allowed the central
+1st dNN atoms to relax, as shown in Fig. 1.
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14J. Cieślak, J. Przewoźnik, and S. M. Dubiel, “Structural and electronic properties
of the μ-phase Fe–Mo compounds,” J. Alloys Compd. 612, 465–470 (2014).
15X. Y. Cui and S. P. Ringer, “On the nexus between atom probe
microscopy and density functional theory simulations,” Mater. Charact. 146, 347
(2018).
16X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl,
“Role of embedded clustering in dilute magnetic semiconductors: Cr doped GaN,”
Phys. Rev. Lett. 95, 256404 (2005).
17J. C. de Lima, A. R. Jeronimo, T. O. Almedia, T. A. Grandi, C. E. M. Campos,
S. M. Souza, and D. M. Triches, “Modelling the atomic structure of an amor-
phous Ni71Nb29 alloy produced by mechanical alloying using reverse Monte Carlo
simulations,” J. Non-Cryst. Solids 353, 1046–1053 (2007).
18B. Delley, “An all-electron numerical method for solving the local density
functional for polyatomic molecules,” J. Chem. Phys. 92(1), 508–517 (1990).
19B. Delley, “From molecules to solids with the DMol3 approach,” J. Chem. Phys.
113(18), 7756–7764 (2000).
20I. Douglass, T. Hudson, and P. Harrowell, “Density and glass forming ability in
amorphous atomic alloys: The role of the particle softness,” J. Chem. Phys. 144,
144502 (2016).
21T. Egami, S. J. Poon, Z. Zhang, and V. Keppens, “Glass transition in metallic
glasses: A microscopic model of topological fluctuations in the bonding network,”
Phys. Rev. B 76, 024203-1–024203-6 (2007).
22S. R. Elliott, “Origin of the first sharp diffraction peak in the structure factor of
covalent glasses,” Phys. Rev. Lett. 67(6), 711–714 (1991).
23T. Fang, S. J. Kennedy, L. Quan, and T. J. Hicks, “The structure and paramag-
netism of Ni3Nb,” J. Phys.: Condens. Matter 4, 2405–2414 (1992).
24R. X. Feng, Z. H. Stachurski, M. D. Rodriguez, P. Kluth, L. L. Araujo, and
M. C. Ridgway, “X-ray scattering from amorphous solids,” J. Non-Cryst. Solids
383, 21–27 (2014).
25P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca,
NY, USA, 1967).
26F. C. Frank and J. S. Kasper, “Complex alloy structures regarded as sphere
packings. I. Definitions and basic principles,” Acta Crystallogr. 11(3), 184–190
(1958).
27G. Gutierrez and B. Johansson, “Molecular dynamics study of structural prop-
erties of amorphous Al2O3,” Phys. Rev. B 65, 104202 (2002).
28A. Hirata, P. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A. R. Yavari, T. Sakurai, and
M. Chen, “Direct observation of local atomic order in a metallic glass,” Nat. Mater.
10, 28–33 (2011).
29T. C. Hufnagel, “Amorphous materials: Finding order in disorder,” Nat. Mater.
3, 666–667 (2004).
30A. Inoue and A. Takeuchi, “Recent progress in bulk glassy alloys,” Mater. Trans.
43, 1892–1906 (2002).
31L. N. Kolotova, G. E. Norman, and V. V. Pisarev, “Glass transition of aluminium
melt: Molecular dynamics study,” J. Non-Cryst. Solids 429, 98–103 (2015).
32M. Krbal, A. V. Kolobov, B. Hoyt, B. Andre, P. Fons, R. E. Simpson, T. Uruga,
H. Tanida, and J. Tominaga, “Amorphous InSb: longer bonds yet higher density,”
J. Appl. Phys. 108, 023506–023515 (2010).

33P. F. Lang and B. C. Smith, “Ionic radii for group 1 and group 2 halide, hydride,
fluoride, oxide, sulfide, selenide and telluride crystals,” Dalton Trans. 39(33),
7786–7791 (2010).
34M. Laso, N. C. Karayiannis, K. Foteinopoulou, M. L. Mansfield, and M. Kroger,
“Random packing of model polymers: Local structure, topological hindrance and
universal scaling,” Soft Matter 5, 1762–1770 (2009).
35J. C. Lee, K. W. Park, K. H. Kim, E. Fleury, B. J. Lee, M. Wakeda, and Y.
Shibutani, “Origin of the plasticity in bulk amorphous alloys,” J. Mater. Res.
22(11), 3087–3097 (2007).
36M. Leitner, T. Leitner, A. Schmon, K. Aziz, and G. Pottlacher, “Thermophys-
ical properties of liquid aluminium,” Metall. Mater. Trans. A 48, 3036–3045
(2017).
37Y. Li, Q. Guo, J. A. Kalb, and C. V. Thompson, “Matching glass-forming abil-
ity with the density of the amorphous phase,” Science 322(5909), 1816–1819
(2008).
38E. Ma, “Tuning order in disorder,” Nat. Mater. 14, 547–552 (2015).
39I. Martin, T. Ohkubo, M. Ohnuma, B. Deconihout, and K. Hono, “Nanocrys-
tallisation of Zr41.2Cu12.5Ni10Ti13.8Be22.5 metallic glass,” Acta Mater. 52, 4427
(2004).
40D. B. Miracle, “A structural model for metallic glasses,” Nat. Mater. 3(10), 697–
702 (2004).
41M. Muller, J. Nievergelt, S. Santos, and U. W. Suter, “A novel geometric embed-
ding algorithm for efficiently generating dense polymer structures,” J. Chem. Phys.
114(22), 9764–9771 (2001).
42P. Nash and A. Nash, “The Nb-Ni system,” Bull. Alloy Phase Diagrams 7(2),
124–129 (1986).
43B. Noble, S. J. Harris, and K. Dinsdale, “The elastic modulus of aluminium-
lithium alloys,” J. Mater. Sci. 17(2), 461–468 (1982).
44K. W. Park, J. I. Jang, M. Wakeda, Y. Shibutani, and J. C. Lee, “Atomic packing
density and its influence on the properties of Cu-Zr amorphous alloys,” Scr. Mater.
57, 805–808 (2007).
45J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
46D. E. Polk, “The structure of glassy metallic alloys,” Acta Metall. 20, 485–491
(1972).
47R. G. Quynn, J. L. Riley, D. A. Young, and H. D. Noether, “Density, crystallinity,
and heptane insolubility in isotactic polypropylene,” J. Appl. Polym. Sci. 2(5), 166–
173 (1959).
48P. S. Salmon, “Real space manifestation of the first sharp diffraction peak in the
structure factor of liquid and glassy materials,” Proc. R. Soc. London, Ser. A 445,
351–365 (1994).
49P. S. Salmon, “Amorphous materials: Order within disorder,” Nat. Mater. 1(2),
87–88 (2002).
50C. Shi, O. L. G. Alderman, D. Berman, J. C. Du, J. Neuefeind, A. Tamalonis, J. K.
Weber, J. G. You, and C. J. Benmore, “The structure of amorphous and deeply
supercooled liquid alumina,” Front. Mater. 6, 1–15 (2019).
51R. K. Singh, S. Y. Wu, H. X. Liu, L. Gu, D. J. Smith, and N. Newman, “The role of
Cr substitution on the ferromagnetic properties of Ga1-xCrxN,” Appl. Phys. Lett.
86(1), 012504 (2005).
52Z. H. Stachurski, “Yield strength and anelastic limit of amorphous ductile
polymers,” J. Mater. Sci. 21, 3231–3236 (1986).
53Z. H. Stachurski, “Definition and properties of ideal amorphous solids,” Phys.
Rev. Lett. 90(15), 5502 (2003).
54Z. H. Stachurski, “On structure and properties of amorphous materials,” Mate-
rials 4, 1564–1598 (2011).
55H. W. Starkweather and R. E. Moynihan, “Density, infrared absorption, and
crystallinity in 66 and 610 nylons,” J. Polym. Sci. 22, 363–368 (1956).
56Y. L. Sun and J. Shen, “Icosahedral ordering in Cu60Zr40 metallic glass:
Molecular dynamics simulations,” J. Non-Cryst. Solids 355(31-33), 1557–1560
(2009).
57E. Svab, F. Forgacs, F. Hajdu, N. Kroo, and J. Takacs, “Partial correlations in
Ni60Nb40 metallic glass,” J. Non-Cryst. Solids 46, 125–134 (1981).
58D. N. Theodorou and U. W. Suter, “Atomistic modelling of mechanical proper-
ties of polymeric glasses,” Macromolecules 19, 139–154 (1986).

J. Chem. Phys. 151, 194506 (2019); doi: 10.1063/1.5113733 151, 194506-10

https://scitation.org/journal/jcp
https://doi.org/10.1021/j100812a027
https://doi.org/10.1016/j.msea.2004.09.029
https://doi.org/10.1016/j.commatsci.2013.04.022
https://doi.org/10.1063/1.1659198
https://doi.org/10.1080/09500839.2011.616181
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1016/j.jallcom.2014.05.201
https://doi.org/10.1016/j.matchar.2018.05.015
https://doi.org/10.1103/physrevlett.95.256404
https://doi.org/10.1016/j.jnoncrysol.2007.01.012
https://doi.org/10.1063/1.458452
https://doi.org/10.1063/1.1316015
https://doi.org/10.1063/1.4944681
https://doi.org/10.1103/physrevb.76.024203
https://doi.org/10.1103/physrevlett.67.711
https://doi.org/10.1088/0953-8984/4/10/007
https://doi.org/10.1016/j.jnoncrysol.2013.04.070
https://doi.org/10.1107/s0365110x58000487
https://doi.org/10.1103/physrevb.65.104202
https://doi.org/10.1038/nmat2897
https://doi.org/10.1038/nmat1227
https://doi.org/10.2320/matertrans.43.1892
https://doi.org/10.1016/j.jnoncrysol.2015.08.025
https://doi.org/10.1063/1.3436592
https://doi.org/10.1039/c0dt00401d
https://doi.org/10.1039/b820264h
https://doi.org/10.1557/jmr.2007.0382
https://doi.org/10.1007/s11661-017-4053-6
https://doi.org/10.1126/science.1163062
https://doi.org/10.1038/nmat4300
https://doi.org/10.1016/j.actamat.2004.05.038
https://doi.org/10.1038/nmat1219
https://doi.org/10.1063/1.1371480
https://doi.org/10.1007/bf02881547
https://doi.org/10.1007/bf00591481
https://doi.org/10.1016/j.scriptamat.2007.07.019
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1016/0001-6160(72)90003-x
https://doi.org/10.1002/app.1959.070020506
https://doi.org/10.1098/rspa.1994.0065
https://doi.org/10.1038/nmat737
https://doi.org/10.3389/fmats.2019.00038
https://doi.org/10.1063/1.1843276
https://doi.org/10.1007/bf00553361
https://doi.org/10.1103/PhysRevLett.90.155502
https://doi.org/10.1103/PhysRevLett.90.155502
https://doi.org/10.3390/ma4091564
https://doi.org/10.3390/ma4091564
https://doi.org/10.1002/pol.1956.1202210202
https://doi.org/10.1016/j.jnoncrysol.2009.06.010
https://doi.org/10.1016/0022-3093(81)90154-x
https://doi.org/10.1021/ma00155a022


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

59L. Th. To, D. J. Daley, and Z. H. Stachurski, “On the definition of an ideal
amorphous solid of uniform hard spheres,” Solid State Sci. 8, 868–879 (2006).
60X. Tong, G. Wang, Z. H. Stachurski, B. Bednarcik, N. Mattern, Q. J. Zhai, and
J. Eckert, “Structural evolution and strength change of a metallic glass at different
temperatures,” Sci. Rep. 6, 30876 (2016).
61M. M. J. Treacy and K. B. Borisenko, “The local structure of amorphous silicon,”
Science 335, 950–953 (2012).
62M. Wakeda, Y. Shibutani, Sh. Ogata, and J. Y. Park, “Relationship between
local geometrical factors and mechanical properties for Cu-Zr amorphous alloys,”
Intermetallics 15, 139–144 (2007).
63N. Wanderka, M.-P. Macht, M. Seidel, and S. Mechler, “Formation of quasicrys-
tals in ZrTiCuNiBe bulk glass,” Appl. Phys. Lett. 77(24), 3935–3937 (2000).
64G. Wang, J. Shen, J. F. Sun, B. D. Zhou, J. D. FitzGerald, D. Llewellyn,
and Z. H. Stachurski, “Isothermal nanocrystallisation behavior of ZrTiCuNiBe

bulk metallic glass in the supercooled region,” Scr. Mater. 53, 641–645
(2005).
65W. H. Wang, “The elastic properties, elastic models and elastic perspectives of
metallic glasses,” Prog. Mater. Sci. 57(3), 487–656 (2012).
66R. W. G. Wyckoff, The Structure of Crystals, 2nd ed. (Reinhold Publishing
Corporation, New York, USA, 1935).
67J. Zarzycki, Glasses and the Vitreous State (Cambridge University Press, Cam-
bridge, 1991).
68A. V. Zhalko-Titarenko, M. L. Yevlashina, V. N. Antonov, B. Yu. Yavorskii, Yu.
N. Koval, and G. S. Firstov, “Electronic and crystal structure of the ZrCu inter-
metallic compound close to the point of structural transformation,” Phys. Status
Solidi B 184, 121–128 (1994).
69L. N. Zou, X. Cheng, M. L. Rivers, H. M. Jaeger, and S. R. Nagel, “The packing
of granular polymer chains,” Science 326(5951), 408–410 (2009).

J. Chem. Phys. 151, 194506 (2019); doi: 10.1063/1.5113733 151, 194506-11

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.solidstatesciences.2006.02.042
https://doi.org/10.1038/srep30876
https://doi.org/10.1126/science.1214780
https://doi.org/10.1016/j.intermet.2006.04.002
https://doi.org/10.1063/1.1329636
https://doi.org/10.1016/j.scriptamat.2005.05.038
https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1002/pssb.2221840108
https://doi.org/10.1002/pssb.2221840108
https://doi.org/10.1126/science.1177114

