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The basic structure of comet nuclei is an aggregation of grains,
with a size distribution that extends over several orders of magni-
tude and a similar distribution of pores. Although attempts have
been made to assess the effect of porosity on the thermal conductiv-
ity, the effect of pore size distribution has been ignored. Modeling
a porous structure with a wide size distribution would require a
very fine 3-D grid, so as to accommodate the smallest and largest
voids. In order to circumvent this difficulty, we adopt a hierarchical
procedure. Thus we assume a random and fractal porous structure
and use a 3-D Monte Carlo model. The basic configuration is a cube
made of unit cells of two types, (ice) filled and void, randomly dis-
tributed. Their relative number corresponds to a prescribed porosity.
We solve the heat transport equation for this cube until a steady state
is obtained, and from this solution the effective thermal conductiv-
ity is derived. The calculations are repeated for a range of porosities
and temperatures, since the ice conductivity is temperature depen-
dent. The basic cube serves as a unit filled cell in a larger cube, and
in this way the hierarchical structure of the medium is built up.

We find that the thermal conductivity is lowered by several or-
ders of magnitude at high porosities. The correction factor, obtained
as a fit to the results of our calculations, is expressed as a smooth
function of the porosity, which tends to zero as the porosity ap-
proaches the percolation threshold of the solid. If only the porosity
of the medium is known, this correction is not uniquely determined,
but rather a range of values is possible. Only if the size distribu-
tion of the pores is known does the correction become uniquely
determined. c© 2002 Elsevier Science (USA)
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We should stress that pores will be assumed to be empty,
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1. INTRODUCTION

The thermal conductivity of low-temperature ice, as found in
comet nuclei, has been determined both experimentally and from
theoretical considerations. The formulae provided by Klinger
(1980, 1981) have gained widespread use. But cometary material
is highly porous, and although it is certain that porosity lowers
the thermal conductivity, it is unclear to what extent, and how the
correction depends on porosity and on the pore size distribution.
So far, answers to these questions have been either vague or
widely discrepant.
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whereas in reality, when the solid matrix is made predominantly
of ice and temperatures are not too low, vapor may fill the pores
and flow through them. Such is the case in the outer layers of
cometary nuclei, for example. Often, heat transport by vapor
can be more efficient than heat conduction by the solid (e.g.,
Smoluchowski 1982, Steiner and Kömle 1991). Rigorously, such
situations should be described by simultaneous solutions of the
mass and heat transport equations and then heat transfer by
vapor arises independently of heat conduction by the solid (e.g.,
Espinasse et al. 1991, Prialnik 1992, Benkhoff and Huebner
1995). Only if mass transport is omitted, in order to simplify
the calculations, does it become necessary to parametrize heat
transport by vapor and add it to the thermal conductivity coef-
ficient, which results in an effective thermal conductivity (e.g.,
Kossacki et al. 1994). Indeed, laboratory determinations of the
thermal conductivity of porous water ice are complicated by
the fact that a significant amount of heat is transported by the
vapor that fills the pores, in addition to the heat conducted by
the solid matrix (Seiferlin et al. 1996 and references therein). In
the present paper, effective thermal conductivity is taken to rep-
resent the conductivity of a multicomponent solid, to be distin-
guished from the conductivity of a single component.

Generally, a porous medium may be regarded as a homoge-
neous two-phase material—one occupying a volume fraction p
and the other 1 − p—with two characteristic conductivities, K p

and Ks , respectively. Although heat may be transferred through
the pores by radiation (or by a fluid flow), usually K p � Ks .
Simple analytical approximations for the effective conductivity
of such a medium, expressed as φKs in terms of the ratio of
the conductivities of the two phases, rps = K p/Ks , include: an
arithmetic mean, φ = 1 + rps , which is obviously inappropriate
at high porosities if rps � 1 (such as in the case when pores are
one of the phases); a weighted geometric mean,

φ = r p
ps ; (1)

a parallel combination of the two phases,

φ = prps + (1 − p); (2)
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and a series combination,

φ =
(

p

rps
+ 1 − p

)−1

(3)

(Horai 1991 and references therein). All these simple analytical
solutions ignore the structure of the porous medium. Moreover,
when rps � 1, one would not expect the precise value of the
low pore conductivity to play a major role (except for p very
close to unity); that is, one would expect the effect of pores to
converge to that of a vacuum. However, such behavior is obtained
only for the parallel combination; on the other hand, the parallel
combination is obviously wrong at high porosities.

The first to supply a formula for the thermal conductivity
of a structured mixed medium—a packed-sphere bed—was
Maxwell (1873), based on an analogy between thermal and elec-
trical conductivities. In fact, this approach provides upper and
lower limits for the conductivity, obtained by exchanging the
roles of the two phases. In terms of the ratio rps of the pore
conductivity to that of the solid, the medium conductivity nor-
malized to that of the solid varies between

φL = rps
2prps + (3 − 2p)

(3 − p)rps + p
(4)

and

φU = (2 − 2p) + (1 + 2p)rps

(2 + p) + (1 − p)rps
. (5)

These formulae are valid, however, only at low porosities, where
φ ∼ φU , and at high ones, where φ ∼ φL . The correct answer
probably lies in-between these limits. It is noteworthy that for
rps � 1, the upper limit yields results that are very close to the
correction suggested by Smoluchowski (1981) for the conduc-
tivity of a porous medium, φ = 1 − p2/3, which was based on
geometrical considerations. An extension of Maxwell’s formu-
lae, valid to higher orders of the solid concentration 1 − p, was
later provided by Rayleigh (1892). Numerous other formulae
followed, based on different assumptions regarding the struc-
ture of the porous medium in two or three dimensions (see, e.g.,
Cheng and Hsu 1999). All these formulae share the property
that the effective conductivity is extremely sensitive to poros-
ity either near p = 0 or near p = 1. The structures considered
are simple insofar as the sizes of voids are fixed (although their
shapes may vary) and the two phases may be interchanged.

The thermal conductivity of porous ice relevant to comet nu-
clei was considered by Steiner and Kömle (1991) and, more
recently, by Sirono and Yamamoto (1997). The former use a
similar, albeit more elaborate version of Maxwell’s procedure
and arrive at a formula for the effective thermal conductivity of
a mixture (ice and void) in terms of the individual conductivities
of the components. The latter derive formulae both for the effec-

tive conductivity of porous ice and for a mixture of amorphous
and crystalline ice, based on the effective medium theory.
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None of these studies considers a distribution of pore sizes. A
porous medium, however, is characterized by at least two param-
eters: the porosity and the pore size, or the pore size distribution.
How, if at all, does the latter influence the conductivity? The
purpose of the present paper is to address this question, using a
three-dimensional model of a porous medium. The basic struc-
ture assumed is fractal, with the pore size distribution spanning
several orders of magnitude. Obviously, in order to model such
a structure, a very fine 3-D grid would be required, so as to ac-
commodate the smallest and largest voids. Such an approach is
impractical (impossible, in fact, in view of computational con-
straints!). In order to circumvent this difficulty, we adopt a hi-
erarchical procedure. The porous medium is built by means of
a Monte Carlo method (Shoshany et al. 1999). Given the bulk
conductivities of the constituents, ice and pores, the conductivity
of the medium can be modeled as a function of both porosity and
temperature. In Section 2 we describe the model and method of
computation; results are presented in Section 3 and discussed in
Section 4, where we also state our main conclusions and make
suggestions for future work.

2. THE MODEL

The first step of each run of the calculation consists of generat-
ing the medium. As stated above, in order to take account of pores
having largely different sizes, we adopt a hierarchical procedure,
which yields a fractal medium. In all cases, we consider a three-
dimensional cube composed of cubical cells of two types: “mate-
rial” (labeled 1) and “void” (labeled 0). In the porous medium of
the first generation (referred to as “medium 1”), the material cells
are made of ice, while the voids may actually contain gas, such
as water vapor. In the second generation medium (referred to as
“medium 2”), the material cells are cubes of the first generation;
similarly, the material cells of the third generation (“medium 3”)
are cubes of the second generation. Thus a multitude of pore sizes
is accounted for, arising from both the distribution of voids and
the fractal structure. This is illustrated in Fig. 1.

An initial porosity p0 is chosen, and the cells are assigned val-
ues of 0 or 1 at random in such a way that the desired porosity is
attained. The values are stored in a three-dimensional matrix, to
be used in the heat conduction calculations. The same procedure
and p0 is adopted for the media of all generations. However,
while the porosity p1 of medium 1 is obviously p1 = p0, the
actual porosity of medium 2 is

p2 = p0 + (1 − p0)p1 = 2p0 − p2
0, (6)

and similarly for medium 3,

p3 = p0 + (1 − p0)p2 = 3p0 − 3p2
0 + p3

0. (7)
It can be easily shown that, generally, for a hypothetical
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FIG. 1. Schematic representation of the hierarchical (fractal) model of a porous medium. The dimension adopted for illustration is n = 4, whereas the
.
calculations were performed for n = 50. The basic (fractal) porosity is p0 = 0.5

medium n,

pn = 1 − (1 − p0)n. (8)

The porosity values corresponding to the different cases are lis-
ted in Table I. We only consider fractal porosity values p0 that
are lower than the percolation threshold pc ≈ 0.7, above which
there is generally no continuous path of material cells connecting
the top to the bottom.

To illustrate the method of computation of the thermal con-
ductivity, we consider medium 1 and denote the cell side by �.
The conductivity of the ice is taken to be of the form

Kice = b/T, (9)

typical of crystalline ice at low temperatures, with b = 5.67 ×
102 W m−1, as given by Klinger (1980). For the void cells, we

TABLE I
Porosities of the Three Media

p1 = p0 p2 p3

0 0 0
0.05 0.0975 0.143
0.1 0.190 0.271
0.2 0.360 0.488
0.3 0.510 0.657
0.4 0.640 0.784
0.5 0.750 0.875

0.6 0.840 0.936
For further details, see text.

assume that heat is transported by radiation, which yields a ther-
mal conductivity of the form

Kvoid = 4εσ�T 3, (10)

where σ is the Stefan–Boltzmann constant and the emissivity ε

is of order unity. Although there are pores of sizes greater than
�, the weighted average pore size is close to � for p < pc, and
hence Eq. (10) is valid for the entire medium. The conductivity
across a 1–0 boundary is taken to be 2(K −1

ice + K −1
void)−1.

We solve the heat conduction equation

ρc
∂T (x, y, z, t)

∂t
= −

(
∂ Fx

∂x
+ ∂ Fy

∂y
+ ∂ Fz

∂z

)
, (11)

where ρ is the density and c is the heat capacity of the ice,

c = αT + β, (12)

with α = 7.49 × 104 erg g−1 K −2 and β = 9 × 105 erg g−1 K −1

(Klinger 1981), and

Fx = −K (T )
∂T (x, y, z, t)

∂x
, etc. (13)

For the void cells, the left-hand side of Eq. (11) vanishes, mean-
ing that a steady state prevails. The boundary conditions are con-
stant temperature at the bottom of the cube, T (x, y, z = 0, t) =
T0, and constant heat flux at the top (z = L), F(x, y, L , t) = F0.
The lateral boundary conditions are periodic, T (L , y, z, t) =
T (0, y, z, t), T (x, L , z, t) = T (x, 0, z, t). The initial condition

is T (x, y, z, t = 0) = T0.
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Under such conditions, the temperature distribution tends to a
steady state: for a constant thermal conductivity, the temperature
would vary linearly with depth (i.e., in the z direction) and be
constant over surfaces of constant z. The thermal conductivity
would then be given by

K = F0L

Ts − T0
, (14)

where Ts(>T0) is the steady state temperature at the top of the
cube. Since in our case the conductivity is temperature depen-
dent, we choose F0 so that the resulting Ts is sufficiently close to
T0 for Eq. (14) to still be valid, but at the same time sufficiently
higher than T0 for the results to be numerically meaningful. The
equations are solved numerically over a 503 Cartesian grid, us-
ing an explicit difference scheme and time steps dictated by the
Courant condition (�t ≤ � 2ρ(αT0 + β)T0

2h , since T0 is the minimal
temperature within the medium), until the temperature distribu-
tion is stabilized, that is, a steady state is attained. The resulting
value of K from Eq. (14) is taken to represent medium 1, K1(T0).
It serves as the thermal conductivity of material cells in medium
2 (replacing Kice). In a similar manner, we now obtain K2(T0),
to be used for the material cells in medium 3. We repeat the
calculations for different values of T0, at intervals of 50 K, over
the range relevant to comets. In each case, runs are repeated for
many different random distributions (with the same p0), in order
to reduce the standard deviation to less than 30%. Large vari-
ations are obtained at porosities near the percolation limit (cf.,
e.g., Gingold and Lobb 1990). The calculations are repeated
for different values of p0, at intervals of 0.1. We note that for
each pair of values (T0, p0), K (T0) is obtained for three different
porosity values: p0, p1, and p2.

As a test, we ran the code with p0 = 0, that is, all cells ice, and
recovered the thermal conductivity of ice Kice. In this case, the
three media are identical. As a further test, we assumed a mixture
of two phases, of fixed conductivities Ka and Kb = 1000 Ka ,
occupying fractions p and 1 − p of the volume, respectively. For
p = 1, we obtained K = Ka and for p = 0, K = Kb, as required.

3. RESULTS

For the first medium, we assume a cell size � = a1 = 10 µm
and carry out calculations for fractal porosities in the range 0 ≤
p0 ≤ 0.6. Higher values of p0 would be unrealistic, since they
would result in extremely high values for p3 (see Table I). We
note that the actual pore size only affects the heat conductivity
through pores (Eq. (10)) and could otherwise be scaled out.
The variation of heat conductivity K1(T, p) with temperature is
plotted in Fig. 2 for various porosity values. As expected, higher
porosities lead to lower conductivities; the trend of a decreasing
thermal conductivity with increased temperature is preserved.

For the second medium, the cell size is � = a2 = 50 a1 =

0.5 mm, and material cells have the conductivity K1(T, p) ob-
tained for the first medium. The resulting conductivity K2(T, p)
IK, AND PODOLAK

FIG. 2. Thermal conductivity as a function of temperature obtained for
medium 1. The various symbols correspond to various porosities: p = 0 (filled
triangle), p = 0.05 (filled square), p = 0.1 (filled pentagon), p = 0.2 (four-
point star), p = 0.3 (five-point star), p = 0.4 (six-point star), p = 0.5 (triangle),
and p = 0.6 (square).

as a function of temperature is shown in Fig. 3 for various poros-
ity values.

Finally, for the third medium, the cell size is � = a3 = 50
a2 = 2.5 cm, and material cells have the conductivity K2(T, p)
obtained for medium 2. The results for K3(T, p) of medium 3
are shown in Fig. 4. In order to facilitate a comparison among the
results obtained for the three media, Figs. 2–4, the same symbol
has been assigned to similar porosity values. We find that for the
same porosity, the lowest conductivities are those of the lowest
rank medium.

In Fig. 5, we show the dependence of thermal conductivity on
porosity for various temperatures. It is clearly seen that a high
porosity may lower the thermal conductivity by several orders
of magnitude. Finally, in Fig. 6, we plot the thermal conduc-
tivity divided by the conductivity of the solid material, that is,
Kice(T ), Eq. (9). The immediate conclusion is that, to a good
approximation,

K (T, p)

Kice(T )
= φ(p, n).

That is, the correction to the thermal conductivity due to porosity
is independent of temperature. In addition, for a given
fractal porosity p0, we find K1 = Kiceφ(p0), K2 = K1φ(p0) =
Kiceφ

2(p0), and generally,
φ(p, n) = φn(p0), (15)
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FIG. 3. Thermal conductivity as a function of temperature obtained for
medium 2. The various symbols correspond to various porosities: p = 0
(filled triangle), p = 0.0975 (filled pentagon), p = 0.19 (four-point star), p =
0.36 (six-point star), p = 0.51 (triangle), p = 0.64 (square), and p = 0.75
(pentagon). Note that the same symbols are used for porosity values similar
to those of Fig. 1.

FIG. 4. Thermal conductivity as a function of temperature obtained for
medium 3. The various symbols correspond to various porosities: p = 0
(filled triangle), p = 0.143 (filled pentagon), p = 0.271 (five-point star), p =
0.488 (triangle), p = 0.657 (square), p = 0.784 (pentagon), and p = 0.875

(skeletal triangle). Note that the same symbols are used for porosity values
similar to those of Figs. 1 and 2.
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FIG. 5. Thermal conductivity as a function of porosity for all media and
temperatures. Various symbols correspond to various temperatures, as indicated.

where p0 = p0(p, n). This is correct, however, only so long as
the conductivity of the pores is negligible. Since this conduc-
tivity increases with pore size and with the third power of the
temperature, its effect becomes apparent in the higher order me-
dia, at very high porosities and high temperatures. This can be
seen in Fig. 6, where the conductivities start deviating from the
general trend by increasing with increasing temperature. In fact,
as already mentioned, there is a basic difference between the pore
conductivity and that of the solid, insofar as the former depends
explicitly on the pore size, while the latter is size-independent.
It is noteworthy that the effect of pores becomes appreciable at a
porosity of ∼0.7. In order to test this conclusion, we ran several
models adopting arbitrarily high and low values for ε (0.1 and
10). The results for p ≤ 0.7 were not affected. If we regard the
pores as a resistive medium to the flow of heat, and the solid as
a permeable one, then the percolation limit for the solid in a 3-D
medium is about 0.3, which corresponds to p = 0.7 in our case
(the volume fraction of the solid being 1 − p). It is reasonable,
therefore, that the effect of pore conductivity becomes appre-
ciable below the percolation threshold of the solid, that is for
p > pc, where pc ≈ 0.7.

If we ignore the effect of pore conductivity and focus on the
correction factor to the conductivity of solid ice due to porosity,
we find for φ(p0) a very good fit of the form

φ(p0) = (1 − p0/pc)α(p0), (16)

with α(p) = 4.1p + 0.22 and pc = 0.7. The fit is not very sen-

sitive to the exact value of pc; adopting pc = 0.69 (percolation
limit of 0.31 for the solid, corresponding to site percolation in a
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FIG. 6. Normalized thermal conductivity (on a logarithmic scale) as a function of porosity. Various symbols are used for the various media: medium 1 (filled

pentagon), medium 2 (filled square), and medium 3 (filled triangle). Lines correspond to the fit formulae for the correction factor: φ(p) (solid), φ2[p0(p2)] (dotted),

and φ3[p0(p3)] (dashed).

simple cubic lattice), we obtain an equally good fit by replacing
the coefficients 4.1 and 0.22 by 3.9 and 0.23, respectively. Note
that φ = 1 for p0 = 0 and φ = 0 for p0 = pc, as required. In
fact, the form of Eq. (16) for the scaled conductivity is in ac-
cordance to percolation and effective medium theories (Stauffer
and Aharony 1994, Bergman and Stroud 1992).

The medium we are dealing with is fractal, and given the
porosity p, it can assume a large (in principle, infinite) number
of structures, of increasing complexity, as determined by n, the
hierarchical rank of the medium. Thus medium 3 in our case
represents a more complicated structure than medium 1. The
difference is caused by the size distribution of pores: for a unit
size medium, there is a unique pore size in medium 1, given by
1
m (m = 50 in our calculations); medium 2 has two pore sizes 1

m
and 1

m2 , medium 3 has pore sizes 1
m , 1

m2 , and 1
m3 , and so forth.

Thus, generally, for medium n of size a, pore sizes range from
a minimum a0 to a maximum, a0mn−1, and a = a0mn . Hence,

( ) 1
n

m = a

a0
. (17)
Since the smallest unit size a0 varies as m−n , while the number
of material cubes in each structure Nn varies as [(1 − p0)m3]n ,
the fractal dimension of such a medium is given by

D = lim
a0→0

ln N

ln(1/a0)
= 3 + ln(1 − p0)

ln m
, (18)

which, for example, yields D = 3 − 0.256 ln(1 − p0) in our cal-
culations. Substituting (8) and (17) into (18), we obtain

D = 3 + ln(1 − p)

ln(a/a0)
. (19)

Thus the structure of this fractal medium is determined by its
porosity and by the size of the smallest pore relative to the
medium’s length scale; for example, p = 0.5 and a/a0 = 103

yield D = 2.9, while for p = 0.75 and a/a0 = 10, D = 2.4.
Although D is independent of n, we found that the correction

to the thermal conductivity due to porosity may assume differ-
ent values depending on the value of n. These, however, are
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limited, and the range of variation may be obtained as follows.
Suppose that the porosity may assume any value in the interval
[pmin, pmax], porosities very close to 0 or 1 being unrealistic.
Then, using Eq. (8),

pmin ≤ p0 ≤ p = 1 − (1 − p0)n ≤ pmax,

and the correction factor,

φ(p, n) = [
(1 − p0/pc)α(p0)

]n
, (20)

where p0 = 1 − (1 − p)1/n , lies between

φmin(p) = (1 − p/pc)α(p) (21)

and

φmax(p) = [
(1 − pmin/pc)α(pmin)

]ln(1−p)/ ln(1−pmin)
. (22)

The ultimate lower limit, that is, the most significant correction
to the solid phase conductivity, is therefore φmin(pmax). For the
thermal conductivity of a porous medium whose only known
property is the porosity, the range of variation of the correction
factor is shown in Fig. 7. Future studies will have to test the
general validity of this correction factor for other basic thermal
conductivity laws.
In order to fix the correction factor within this range, one

needs to determine n, noting that both p and D are independent

FIG. 7. Correction factor to the thermal conductivity of the solid phase as a function of porosity (a) on a linear scale and (b) on a logarithmic scale. The lower

where 1 ≤ k ≤ n, and the weight function Pk = Vk/V , where
and upper limits for a given p, φmin, and φmax, respectively, are indicated. Betwee
hierarchical structure), as indicated.
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of n. We illustrate this with an example. The volume of the final
fractal medium used in our model (medium 3) is larger than
that of the smallest pore a0 by a factor of 1.25 × 105. This was
achieved in a three-generation hierarchy, increasing the unit size
50-fold at each later generation. However, roughly the same a/a0

contrast could be achieved by a greater number of generations
with a smaller size folding—for example, five generations with
a 10-fold size increase—which would correspond to the same
fractal dimension. Even if we choose a similar porosity for the
two cases, we predict different correction factors. For example,
a porosity of 0.66–0.67 corresponds to p0 = 0.3 in the three-
generation medium and p0 = 0.2 in the five generation one, and
the correction factors obtained from (15) and (16) are 0.088
and 0.17, respectively. What, then, is the difference between
these media—namely, how would we know which case to choose
for representing a fractal medium of given porosity and fractal
dimension? Obviously, an additional property must be specified
in order to achieve a one-to-one correspondence between a given
medium and our model, which is based on three independent
parameters (p0, m, and n). We note that the three-generation
medium contains a relatively large number of large pores, while
the five-generation one contains a variety of medium-size pores
instead. Thus, this additional property can be the mean free path
of the medium ā relative to the length scale a, which is easily
calculated from the pore sizes

ak = a0mk−1, (23)
n them, the various curves correspond to various values of n (generations in the
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Vk is the volume occupied by pores of size ak ,

Vk = p0(1 − p0)n−km3(n+1−k)(a0mk−1)3

= a3
0 p0(1 − p0)n−km3n, (24)

and V is the total pore volume, V = ∑
Vk = pa3

0m3n . Thus

ā =
∑

ak Pk ≈ a0mn−1 p0/p = (a/m)(p0/p). (25)

In conclusion, given a fractal medium of porosity p, relative size
a/a0 (or, alternatively, fractal dimension D), and relative mean
free path ā/a, we derive the relevant model parameters from

p = 1 − (1 − p0)n (26)

a/a0 = mn (27)

pa/ā = mp0 (28)

and substitute them into (20) to obtain the correction factor to
the thermal conductivity of the solid material. We note that (18)
may replace (27) if D is known; also, it may be more useful to
replace the normalization length a by the largest pore size of the
medium amax, in which case (28) becomes pamax/ā = p0 and
(27) is not required for obtaining φ.

4. DISCUSSION

We find that the thermal conductivity is lowered by several
orders of magnitude at high porosities. The temperature depen-
dence of the ice conductivity is preserved—the conductivity de-
creases with increasing temperature—so much so that, to a good
approximation, the correction factor is temperature independent.
We also find that, for a given basic porosity, the correction fac-
tor is the same when one passes from one medium to the next.
Thus, as larger and larger pores are added, the conductivity de-
creases by an increasing power of the basic correction factor. At
very high porosities, p > 0.7, below the percolation limit of the
solid through the porous medium, the low radiative conduction
through the pores becomes dominant. If the pores were filled
with a perfect insulator, the conductivity would tend to zero
under these circumstances.

A different correction to the conductivity of a porous medium
results from what is known as the Hertz factor h. If single grains
are considered, this factor takes account of the reduced area of
contact between them. In our model, this would be equivalent to
replacing the icy cubes by spheres or spheroids. Although this
correction can be substantial (Squyres et al. 1985), that is h � 1,
it was shown by Kossacki et al. (1994) that sintering, which is
particularly important for icy grains under cometary conditions,
tends to increase the contact area—and hence the Hertz factor
resulting from it—quite considerably. In any case, this effect
should be included as a correction to Kice itself, before the latter

is modified to take account of the porous structure. (Similarly,
if the solid material is composed of a mixture of ices or ices and
K, AND PODOLAK

dust, the conductivity of the mixture must first be determined,
independently of the porosity.) Generally, however, h is defined
as the ratio of contact area to total area if the medium is cut
along an arbitrary plane. Thus, a medium such as ours, built
of cubes statistically distributed over a given volume, already
has a Hertz factor implicitly included. Contact area and void
volume are no longer independent parameters in such a medium,
as they were considered to be in previous studies (e.g., Steiner
and Kömle 1991), and the decrease in thermal conductivity can
be attributed to either or to both. It should be mentioned that
attempts to determine the Hertz factor by fitting laboratory data
yielded a rather wide range of values, between 0.1 and 0.001.

The fractal medium considered here corresponds to a power
law pore size distribution of a power close to 3. A normal dis-
tribution of pore sizes is not well described by our model of
a porous medium and our results may not apply in that case.
However, it is rather well established that comets are made of
an aggregation of grains and that the grain size distribution fol-
lows a power law with a power of order 3.5. We should, there-
fore, expect the voids between the grains, that is the pores, to
have a similar size distribution. As a simple example, if pores
and grains are randomly distributed and their mean sizes are
rp and rg , respectively then 1

2 ∼< rp/rg = [p/(1 − p)]1/3 ∼< 2, if
p ≤ 0.9. Hence our model is well suited to cometary material.
The problem is to find a correspondence between a real porous
material and the schematic model we have investigated, in order
for our results to be applicable to realistic configurations. To
this end we have identified physical characteristics of a porous
medium that can be translated into the model parameters we
have used. If only the porosity is known, our model provides
lower and upper limits to the correction factor by which the
conductivity of the solid material should be multiplied,

(1 − p/pc)α(p) ≤ φ(p)

≤ (1 − pmin/pc)α(pmin) ln(1−p)/ ln(1−pmin). (29)

The range is quite large at high porosity values. It may be re-
duced, however, if the minimal possible fractal porosity for the
material can be estimated, as the upper limit in (29) decreases
with increasing pmin. For example, if p = 0.5, the correction
factor varies between a lower limit of 5.8% of the solid conduc-
tivity and an upper limit of ∼50% for pmin = 0.1 to ∼20% for
pmin = 0.3.

If any two parameters of the pore size distribution are known
as well, a unique correction factor can be derived (provided the
distribution may be described by a power law). Correction fac-
tors span several orders of magnitude, meaning that porosity has
a very significant effect on the thermal conductivity and hence
on the behavior—thermal evolution and activity—of comets.
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