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In a preceding paper [J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012)], a general kinetic cri-
terion of glass formation has been advanced allowing one to determine theoretically the dependence
of the glass transition temperature on cooling and heating rates (or similarly on the rate of change
of any appropriate control parameter determining the transition of a stable or metastable equilibrium
system into a frozen-in, non-equilibrium state of the system, a glass). In the present paper, this cri-
terion is employed in order to develop analytical expressions for the dependence of the upper and
lower boundaries and of the width of the glass transition interval on the rate of change of the external
control parameters. It is shown, in addition, that the width of the glass transition range is strongly
correlated with the entropy production at the glass transition temperature. The analytical results are
supplemented by numerical computations. Analytical results and numerical computations as well as
existing experimental data are shown to be in good agreement. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4775802]

I. INTRODUCTION

The analysis of the properties of glasses and of the de-
pendence of their properties on the way they are formed is
a problem of intensive current research with a variety of even
partially not explored so far technological applications.1, 2 The
glass transition, the transition of a system being initially in
a stable or metastable thermodynamic equilibrium state to a
frozen-in non-equilibrium state, the glass, is a kinetic phe-
nomenon and by this reason, kinetic criteria have to be em-
ployed in order to describe the glass transition and the proper-
ties of the resulting from such process glasses. This transition
is most frequently so far performed by changes of tempera-
ture but a variety of other control parameters like pressure or
external fields can be utilized for such purposes as well.1, 2

Similarly to the situation discussed here, kinetic criteria of
glass transition can be formulated for the case that the sys-
tem is brought into the glassy state by a variation of other ex-
ternal control parameters or in the analysis of dynamic glass
transitions.3

In a preceding paper,3 an overview on the spectrum of
different historically developed kinetic criteria of glass tran-
sition has been given and a general model-independent ki-
netic criterion of glass formation, respectively, devitrification
was developed. This general criterion contains the mentioned
spectrum of criteria proposed earlier as limiting cases or con-
sequences. As one of the results of this analysis, the depen-
dence of the glass transition temperature at cooling and heat-
ing processes on external pressure and similar effects have
been theoretically described in Ref. 3. As discussed in de-
tail as well in the mentioned paper, different kinetic criteria
of glass formation have been employed in the past in order
to develop estimates of the dependence of the glass transition
temperature on cooling and heating rates. Such relations are

commonly denoted as Bartenev-Ritland equations1–3 in honor
of the men4, 5 which have performed such analysis for the first
time.

In addition to the knowledge of the glass transition tem-
perature also the dependence of the width of the glass tran-
sition interval on cooling and heating rates (or the rates
of change of other control parameters employed) is of ma-
jor interest. From experimental investigations at conventional
cooling rates it has been found that, for example, for sili-
cate glasses (T (+)

g − T (−)
g ) ∼= 50 K holds while for organic

and polymer glasses frequently (T (+)
g − T (−)

g ) ∼= 20 K (cf.,
Ref. 2, page 55) is observed. Generally, for typical glass-
formers estimates of the width of the glass transition range
for cooling processes of the form

(T (+)
g − T (−)

g ) ∼=
(

1

10
− 1

20

)
Tg, (1)

can be made (cf., Ref. 2, Eq. (5.56)). In above relations, Tg is
the glass transition temperature while T (+)

g and T (−)
g are the

upper and lower limits of the glass transition range. As far as
we are aware, a theoretical analysis of the dependence of the
upper and lower limits and the width of the glass transition
interval on cooling and heating rates is missing so far. The
development of theoretical methods of determination of these
parameters is the aim of the present analysis.

In the present paper, we derive estimates of the upper and
lower boundaries, T (+)

g and T (−)
g , and of the width of the glass

transition interval. In this analysis, we employ the general cri-
terion of glass-formation formulated by us in Ref. 3. Such
analysis is of interest per se and even more important taking
into account that the glass transition is investigated presently
both experimentally (such experiments are feasible, now, for
cooling and heating rates in the range between 10−4 K/s up
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to 105 K/s6, 7) and theoretically8, 9 in wide ranges of cooling
and heating rates, i.e., at rates of change of the external con-
trol parameters exceeding considerably the conventional rates
realized earlier.

The analysis presented here is performed at a general
level avoiding widely simplifying assumptions (Sec. II) in the
derivation of the basic results. In the analysis of special ap-
plications, here we assume that cooling and heating proceeds
with the same absolute value of the rate of change of temper-
ature and that the relaxation time depends mainly on pressure
and temperature and only weakly on the structural order pa-
rameter. Generalizations can be performed straightforwardly
based on the general methods outlined here. Some elements
and results of our analysis are similar to dependencies used
or obtained in Refs. 10–13. Latter analysis is, however, de-
veloped based on a different starting point and directed to
a different problem, the determination of the glass transition
temperatures in cooling as compared to heating and the differ-
ences of both these quantities. In order to test our results, for
a model system numerical computations of the width of the
glass transition range in dependence on cooling and heating
rates are performed (Sec. III). Analytical results and numeri-
cal computations will be shown to be in good agreement. In
Sec. IV an alternative method of determination of the width
of the glass transition interval will be discussed based on
the analysis of the expression for the entropy production. A
discussion of the results and further possible developments
(Sec. V) completes the paper.

II. DETERMINATION OF THE BOUNDARIES
AND THE WIDTH OF THE GLASS
TRANSITION INTERVAL

A. General relations

In reconsidering the kinetic definition of the glass transi-
tion temperature, we developed first briefly in Ref. 14 and in
an extended form in3 a model-independent formulation of the
glass transition criterion. In this general model-independent
approach, we introduced similarly to the characteristic relax-
ation time, τR, for the evolution of the structural order param-
eter, ξ , defined via (cf., e.g., Refs. 1, 2, 15, and 16),

dξ

dt
= − 1

τR(p, T , ξ )
(ξ − ξe), (2)

a characteristic time scale of change of temperature, τ T, as

dT

dt
= − 1

τT

T , τT =
{

1

T

∣∣∣∣dT

dt

∣∣∣∣}−1

. (3)

Here p is the pressure, T is the temperature, ξ e the equilib-
rium value of the structural order parameter, and t the time.
So, writing the expressions for the change of temperature and
change of the structural order parameter in terms of the same
laws, the respective characteristic time scales can be then in-
troduced and compared directly.

According to Eq. (3), for any given value of the cooling or
heating rate, q = (dT/dt), we can consequently also determine
a characteristic time of change of temperature, τ T. The cri-
terion for glass-formation is given by the condition that both

time scales coincide widely,3 i.e.,

Tg : τR
∼= τT =⇒

{
1

T

∣∣∣∣dT

dt

∣∣∣∣ τR

}∣∣∣∣
T =Tg

∼= 1. (4)

Indeed, as stressed in detail in Ref. 3, classical equilibrium
thermodynamics implies (as one of the conditions of its ap-
plicability) the fulfillment of the conditions τR � τ T (or
(τR/τ T) = α(+) � 1) while in the frozen-in non-equilibrium
state, the glass, the inequality τR � τ T (or (τR/τ T) = α(−)

� 1) holds. Equation (4) specifies thus by necessity the
transition region between equilibrium liquid and glass for
the case that the glass transition is induced by a change of
temperature.

Proceeding in this way, the upper (T (+)
g ) and lower (T (−)

g )
limits of the glass transition range can be defined then simi-
larly to Eq. (4) as

T (+)
g : τR

∼= α(+)τT =⇒
{

1

T

∣∣∣∣dT

dt

∣∣∣∣ τR

}∣∣∣∣
T =T

(+)
g

∼= α(+) � 1,

(5)

T (−)
g : τR

∼= α(−)τT =⇒
{

1

T

∣∣∣∣dT

dt

∣∣∣∣ τR

}∣∣∣∣
T =T

(−)
g

∼= α(−) � 1,

(6)
by assigning appropriate values to the parameters α(+) and
α(−). For any given relaxation law, Eqs. (4), (5), and (6) deter-
mine the dependence of the glass transition temperature, Tg,
and the upper, T (+)

g , and lower, T (−)
g , boundaries of the glass

transition range by similar dependencies. Moreover, since the
criteria determining the boundaries of the glass transition in-
terval depend only on the absolute value of the cooling and
heating rates, it follows, that – at a fixed absolute value of the
rate of change of temperature (or any other appropriate exter-
nal control parameters) – the boundaries of the glass transition
region are identical for cooling and heating provided the re-
laxation time is a function only of pressure and temperature,
i.e., that its dependence on the structural order parameter is
weak. In the analysis of special cases, latter condition is al-
ways assumed to be fulfilled here.

An illustration of these general results is given in
Fig. 1. The glass transition range is the region, where irre-
versible processes may proceed and the entropy production,
diS, is not equal to zero. In the computations illustrated in
Fig. 1, the relaxation time is supposed to be a function of pres-
sure and temperature, exclusively, and cooling and heating
rates are supposed to have the same constant absolute values
(cf., Ref. 14 for the details). The dependence of the entropy
production due to irreversible relaxation processes in the glass
transition range is different for cooling and heating, how-
ever, the boundaries of the range where entropy production is
different from zero coincide.

B. Qualitative estimates for different relaxation laws

While the glass transition temperature is determined by
an identity of the type as given by Eq. (4), the relations for
the determination of the boundaries of the glass transition
interval, Eqs. (5) and (6), require for their application the
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FIG. 1. Entropy production, (diS/dθ ) (with θ = (T/Tm), Tm is the melting
temperature and R the universal gas constant), in vitrification and devitrifica-
tion in a cyclic cooling-heating run experiment with a constant absolute value
of the rate of change of temperature. The entropy production has one maxi-
mum for cooling (full curve) and two maxima in heating processes (dashed
curve), however, the boundaries of the glass transition interval (characterized
by an entropy production tending to zero) are the same for cooling and heat-
ing processes provided, as assumed in addition that the dependence of the
relation time on the structural order parameter is weak (for the details cf.,
Ref. 14 from which the figure is taken).

knowledge of the values of the parameters α(+) and α(−). In
order to obtain a first qualitative insight into the course of the
dependence of the boundaries and the width of the glass tran-
sition interval on cooling and heating rates, here we will pro-
ceed first in the following way. As estimates of the parameters
α(+) and α(−) we will employ the relations

α(+) ∼= 0.1, α(−) ∼= 10, (7)

i.e., suppose that the system is frozen-in for (τR/τ T)
≥ α(−) ∼= 10 and is found always in a metastable equilibrium
state for (τR/τ T) ≤ α(+) ∼= 0.1. Possible ways of a more precise
specification of these parameters we will discuss here later. As
will be evident from the results of the further analysis, the par-
ticular choice of these parameters affects the final results only
slightly quantitatively. Consequently, proceeding in this way
we can expect to get an at least qualitatively correct impres-
sion on the dependence of the width of the glass transition
interval on cooling and heating rates. In order to avoid any
misunderstanding, we would like to stress once again that in
the subsequent consideration we will also describe methods
allowing one to determine theoretically the values of these
parameters. Such straightforward theoretical determination
requires however much more information concerning the spe-
cific properties of the glass-forming systems under consider-
ation as compared to the specification of the kinetic criteria
expressed via Eq. (7).

The general relations, Eqs. (4)–(6), derived by us in the
present paper, we will apply now utilizing two different relax-
ation laws, Arrhenius and Vogel-Fulcher-Tammann (VFT) re-
laxation. These relaxation laws are of particular significance
for the description of relaxation processes in glass-forming
melts.

1. Arrhenius relaxation

For Arrhenius-type relaxation processes,1, 2 we have

τR = τ0 exp

(
U0

RT

)
= τ0 exp

(
A

T

)
,

U0

R
= A = constant.

(8)

Here U0 is some constant activation energy of structural
relaxation, R is the universal gas constant, and τ 0 is a
pre-factor, which can be approximated frequently by τ 0

= h/(kBT), h being Planck’s constant (h = 6.63 × 10−34 Js)
and kB the Boltzmann constant (kB = 1.38 × 10−23 J/K).
Employing this relation, we get from Eqs. (4), (5), and (6)

1

Tg

= 1

A
ln

(
Tg

τ0q

)
, q =

∣∣∣∣dT

dt

∣∣∣∣ , τ0 = h

kBT
, (9)

1

T
(+)
g

= 1

A
ln

(
α(+)T (+)

g

τ0q

)
, (10)

1

T
(−)
g

= 1

A
ln

(
α(−)T (−)

g

τ0q

)
. (11)

In above relations, Eqs. (9), (10), and (11), τ 0 is a function
of Tg, T (+)

g , or T (−)
g , respectively, i.e., T has to be replaced

in dependence on the particular temperature value considered
by Tg, T (+)

g , or T (−)
g . By the introduction of an appropriate

dimensionless temperature, T̃ , and dimensionless rate of
change of temperature, q̃, via

T̃ = T

A
, q̃ = h

kBA2

∣∣∣∣dT

dt

∣∣∣∣ , (12)

an equation of the form

1

T̃g

= ln T̃g
2 − ln q̃ (13)

is obtained from Eq. (9) for the dependence of the glass transi-
tion temperature on cooling and heating rates. Latter equation
is commonly denoted as the Bartenev-Ritland equation.1–5

Similar equations can be obtained as well from Eqs. (10)
and (11) for the upper and lower boundaries of the glass tran-
sition range

1

T̃g
(+) = ln[(T̃g

(+)
)2α(+)] − ln q̃,

(14)
1

T̃g
(−) = ln[(T̃g

(−)
)2α(−)] − ln q̃.

As a consequence, we arrive at the following relation for the
width of the glass transition interval

T̃g
(+) − T̃g

(−)

T̃g
(+)

T̃g
(−) = ln

⎡⎣(
T̃g

(−)

T̃g
(+)

)2 (
α(−)

α(+)

)⎤⎦ . (15)

Explicitly, the difference (T̃g
(+) − T̃g

(−)
) in Eq. (15) does not

depend on the rate of change of temperature, q̃, however, via
the dependence of both T̃g

(+)
and T̃g

(−)
on the rate of change

of temperature, implicitly it does.
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For any set of values of the parameters α(+) and α(−),
Eqs. (14) and (15) determine the values of the reduced tem-
peratures T̃g

(+)
, T̃g

(−)
, T̃g , and the width of the glass transition

interval (T̃g
(+) − T̃g

(−)
) as functions of the reduced cooling,

respectively, heating rate, q̃. The results are shown in Fig. 2.
Employing the same approximation T̃g

(+)
T̃g

(−) ∼= T̃g
2

as uti-
lized in Refs. 10–13 in another context, this dependence can
be approximately described by

T̃g
(+) − T̃g

(−) ∼= T̃g
2

ln

(
α(−)

α(+)

)
, (16)

or by

T̃g
(+) − T̃g

(−) ∼=
ln

(
α(−)

α(+)

)
(

ln T̃g
2 − ln q̃

)2
. (17)

It follows from Eqs. (16) and (17) (in agreement with the nu-
merical computations as shown in Fig. 2) that the width of
the transition range increases with increasing rate of change
of temperature. It is evident as well that the approximation
T̃g

(+)
T̃g

(−) ∼= T̃g
2

employed in the derivation of Eqs. (16) and
(17) leads to quantitatively correct results only for cooling &
heating rates in the range q̃ ≤ 100.

With the specification Eq. (7) for the boundaries of the
glass transition interval, the numerical factor ln (α(−)/α(+)) is
of the order of ln (α(−)/α(+)) ∼= 4.6. A redefinition via α(+)

∼= 0.01 and α(−) ∼= 100 leads only to a slight quantita-
tive change resulting in ln (α(−)/α(+)) ∼= 9.2. Consequently,
a change in the definition of the boundaries of the glass tran-
sition interval affects the results of the analysis only slightly
quantitatively.

2. Vogel-Fulcher-Tammann relaxation

Let us assume now, as a second example, that the relax-
ation behavior is described by a Vogel-Fulcher-Tammann re-
laxation law,

τR = τ0 exp

(
B

T − T0

)
, B = constant, (18)

which is of particular significance for the description of re-
laxation of glass-forming systems of different nature (cf., e.g.
Refs. 1, 2, 17, and 18). For the further analysis, we introduce,
now, similarly to Eq. (12) the notations

T̃ = T

B
, T̃0 = T0

B
, q̃ = h

kBB2

∣∣∣∣dT

dt

∣∣∣∣ , q =
∣∣∣∣dT

dt

∣∣∣∣ .
(19)

In this case, we get from Eqs. (4), (5), and (6) instead of
Eqs. (13)–(15),

1

T̃g − T̃0
= ln T̃g

2 − ln q̃, (20)

(a)

(b)

FIG. 2. Assuming the system relaxes via the Arrhenius law, for any set of
values of the parameters α(+) and α(−), Eqs. (13)–(15) determine the values

of the reduced temperatures T̃g , T̃g
(+)

, T̃g
(−)

and the width of the glass tran-

sition interval (T̃g
(+) − T̃g

(−)
) as functions of the reduced rate of change of

temperature, q̃. The respective results are shown in the present figure em-
ploying the values of the parameters α(+) and α(−) as given by Eq. (7). The
upper curve (Fig. 2(a)) shows the values of the reduced temperatures in de-
pendence on cooling rate, the lower curves (Fig. 2(b)) show the width of the
glass transition range in dependence on cooling rate computed via the correct
dependencies (Eqs. (13)–(15), full curve) and via the approximation given by
Eqs. (16) and (17) (dashed curve), respectively. It is evident that the approx-
imation gives a qualitatively correct result for the whole spectrum of cooling
rates employed, however, a quantitatively correct description is found only
for sufficiently low cooling rates below q̃ ∼= 100.

1

T̃g
(+) − T̃0

= ln[(T̃g
(+)

)2α(+)] − ln q̃,
1

T̃g
(−) − T̃0

= ln[(T̃g
(−)

)2α(−)] − ln q̃, (21)

T̃g
(+) − T̃g

(−)

(T̃g
(+) − T̃0)(T̃g

(−) − T̃0)
= ln

⎡⎣(
T̃g

(−)

T̃g
(+)

)2 (
α(−)

α(+)

)⎤⎦ .

(22)

Results of numerical computations of the values of the re-
duced temperatures T̃g

(+)
, T̃g

(−)
, T̃g , and the width of the glass
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(a)

(b)

FIG. 3. Similar computations with similar results as shown in Fig. 2 for Ar-
rhenius relaxation (cf., caption to Fig. 2) but here for the VFT-relaxation law
as expressed in the paper via Eqs. (20)–(22) and the approximation, Eqs. (23)
and (24).

transition interval (T̃g
(+) − T̃g

(−)
) as functions of the reduced

cooling, respectively, heating rate, q̃, for a given set of values
of the parameters are shown for this case in Fig. 3. Approx-
imately, the dependence of the width of the glass transition
interval on cooling, respectively, heating rates is described by
the relations,

T̃g
(+) − T̃g

(−) ∼= (T̃g − T̃0)2 ln

(
α(−)

α(+)

)
, (23)

T̃g
(+) − T̃g

(−) ∼=
ln

(
α(−)

α(+)

)
(

ln T̃g
2 − ln q̃

)2
, (24)

which are similar, respectively, identical to Eqs. (16) and (17).
A comparison of the results of analysis obtained for Ar-

rhenius and Vogel-Fulcher-Tammann relaxation laws is given
in Fig. 4. It is evident that deviations in the behavior occur
mainly at relatively low cooling rates when vitrification pro-
ceeds sufficiently near to the Kauzmann temperature, T0.

(a)

(b)

FIG. 4. Comparison of the results for the glass transition temperature and the
width of the glass transition interval as obtained for Arrhenius (dotted curves)
and VFT-relaxation (full curve, cf., Figs. 2 and 3, respectively).

III. COMPARISON WITH NUMERICAL
MODEL COMPUTATIONS

A. Brief description of method of computations

In the present section, we compare the analytical results
obtained here with the results of numerical computations of
the glass transition for a model system characterized by one
structural order parameter ξ . The change of this order param-
eter is described by the set of equations,

dξ

dt
= − 1

τR

(ξ − ξe), q = dT

dt
, (25)

resulting in the following equation for the determination of
the structural order parameter:

dξ

dT
= − 1

qτR

(ξ − ξe). (26)

This equation allows one to describe the dependence of the
structural order parameter on temperature for any given value
of the rate of change of temperature. We assume here, as
already pointed out, constancy of the cooling rate and that
heating proceeds with the same absolute value of the rate of
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change of temperature as the cooling process. The numerical
computations have been performed for the case that relaxation
is described by the VFT-equation. The detailed description
of the model and the results of computations are outlined in
Refs. 1, 2, 8, 9, and 14 and by this reason will not be re-
peated in detail here. We will merely make some comments
concerning model parameters and the relation between the re-
duced temperature values employed here and in the numerical
computations.

The numerical calculations within the mentioned model
approach to the determination of the values of the glass tran-
sition interval at given constant cooling and heating rates are
performed employing the following definitions of reduced di-
mensionless temperature, θ :

θ = T

Tm

, θ0 = T0

Tm

, qθ =
∣∣∣∣dθ

dt

∣∣∣∣ = 1

Tm

∣∣∣∣dT

dt

∣∣∣∣ = q

Tm

.

(27)

Here Tm is the melting temperature of the system under con-
sideration. The VFT relaxation law is written in the form

τR = τ0 exp

((
U ∗

a

RTm

)
1

θ − θ0

)
, τ0 = h

kBT
, B ′ = U ∗

a

RTm

.

(28)

In the above described analytical approach the following
different reduced parameters have been introduced:

T̃ = T

B
, T̃0 = T0

B
, q̃ = h

kBB2

∣∣∣∣dT

dt

∣∣∣∣ . (29)

The VFT law was taken in the form,

τR = τ0 exp

(
B

T − T0

)
, τ0 = h

kBT
. (30)

Now in order to compare the data obtained analytically and
by the numerical computations, we must derive relations be-
tween these reduced variables. First, for the VFT law, we get

B ′

θ − θ0
= B

T − T0
,

TmB ′

T − T0
= B

T − T0
, B = B ′Tm.

(31)

For the Kauzmann temperature, T0, we immediately obtain
(assuming T0 being equal one half of the melting temperature,
i.e., T0 = (1/2)Tm),

T0 = Tm

2
, T̃0 = T0

B
= Tm

2B ′Tm

= 1

2B ′ . (32)

For cooling and heating rates, we have

q̃ = h

kBB2

∣∣∣∣dT

dt

∣∣∣∣ = h

kBB2
q = h

kBB2
qθTm

= h

kBB ′2T 2
m

qθTm = 1

B ′2
h

kBTm

qθ . (33)

The parameters for numerical calculations were the
following:

U ∗
a

RTm

= B ′ = 5, Tm = 750 K, qθ = 10−7 − 107s−1.

(34)

Thus, the parameters which have to be employed here for
the solution of the analytical relations, Eqs. (20)–(22), of the
present analysis are

T̃0 = 1

2B ′ = 1

10
= 0.1,

h

kBTm

1

B ′2
∼= 2.56 × 10−15s,

(35)

q̃ = 2.56 × 10−22 − 2.56 × 10−13. (36)

With these in hand, we proceed to solving Eqs. (20)–(22), and
obtain the sets of values T̃g , T̃ (+)

g , and T̃ (−)
g . The way to derive

then the values of θ is realized straightforwardly via

T̃ = T

B
, θ = T

Tm

, θ = T̃ B

Tm

= T̃ B ′Tm

Tm

= T̃ B ′ = 5T̃ .

(37)
Alternatively, in terms of the dimensionless temperature θ ,
Eqs. (20) and (21) read

1

θg − θ0
= Tm

B

{
ln(θg

2) −
(

h

kBTm

∣∣∣∣dθ

dt

∣∣∣∣)}
, (38)

1

θg
(+) − θ0

= Tm

B

{
ln[(θg

(+))2α(+)] − ln

(
h

kBTm

∣∣∣∣dθ

dt

∣∣∣∣)}
,

(39)

1

θg
(−) − θ0

= Tm

B

{
ln[(θg

(−))2α(−)] − ln

(
h

kBTm

∣∣∣∣dθ

dt

∣∣∣∣)}
.

(40)

Finally, in order to determine the width of the glass tran-
sition region based on the numerical computations, we have
to develop some criterion concerning the definition of the
boundaries of the glass transition interval. In other words,
having a look at Fig. 1, we have to specify the value of the
entropy production below which we can assume it to be equal
to zero. We employ here the following two methods for this
purpose: The methods for estimation of the glass transition re-
gion boundaries, θ (+)

g and θ (−)
g , in dependence on q, employed

in this work, are based on using the dependencies of struc-
tural order parameter, ξ , on temperature. A first straightfor-
ward procedure consists of computing the ratio ξ cooling/ξ heating

of the values of ξ , corresponding to the same temperatures at
cooling, ξ cooling(T), and heating, ξ heating(T) runs, respectively.
The dependencies of this ratio for three different values of
rate of temperature change are presented on Fig. 5(a). At tem-
peratures far from glass transition (in both states, i.e., liquid
and glass), the value of ξ cooling/ξ heating is equal to one. In the
glass transition range, it is less than unity, the amount of devi-
ation depending on the model parameters and the cooling and
heating rate. As a direct way for estimating the values at the
θ (+)
g and θ (−)

g the criterion of difference from unity of the ratio
ξ cooling/ξ heating ratio was used.

The disadvantages of the described procedure are clearly
seen. They are, namely, the unnecessary dependence of the
method on both cooling and heating runs in glass transition,
and also the dependence of the glass transition range on the
precision of computations of the ratios of different ξ -values.
To avoid both these disadvantages, an alternative method was
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(a)

(b)

FIG. 5. Temperature dependencies of different ratios of the structural or-
der parameter ξ employed to define the glass transition region for three
values of cooling and heating rates (qθ is equal to 10−2 (full curve), 10−1

(dashed curve), and 1 s−1 (dotted curve), respectively). (a) Dependence of
ξ cooling/ξheating and (b) of ξ e/ξ cooling and ξ s/ξ cooling on θ . The hatched rect-
angles represent the glass transition ranges, obtained with the use of the
“1% criterion”.

developed. First, we shall use only the temperature dependen-
cies of the systems properties during the cooling run. For this
purpose, two different curves for obtaining θ (+)

g and θ (−)
g val-

ues are utilized. For the upper boundary of the glass transi-
tion range, it is the temperature dependence of the ratio of
equilibrium value of structural order parameter, ξ e, divided by
ξ cooling. To obtain the lower boundary, ξ s, being the frozen-in
value of the structural order parameter, is divided by ξ cooling.
The dependencies of these ratios on temperature for three dif-
ferent cooling rates are presented on Fig. 5(b). Each of the
ratios is equal to one below (or above) the boundary it is in-
voked to define and does decrease in the glass transition range
and further on. As a third method of specification of the width
of the glass transition range, one could replace the entropy
production in cooling by an inverted parabola utilizing a trun-
cated Taylor expansion of the entropy production curve in the
vicinity of the maximum up to second-order in temperature
differences terms (cf., Fig. 1). This method will be discussed
in detail in Sec. IV.

The criterion of deviation of the corresponding ratios
from unity at the glass transition range boundaries is ex-

pressed as

ξe(θ )

ξcooling(θ )

∣∣∣∣
θ=θ

(+)
g

= ξs

ξcooling(θ )

∣∣∣∣
θ=θ

(−)
g

= 1 − β. (41)

Different values of β can be used and were tried in this work.
Setting β equal to the precision of the numerical computa-
tions, 10−6 in our case, results in an inconsistently wide glass
transition range. It should be mentioned that the obtained re-
sults with this value of β are similar to the results obtained
with the first method of estimation of θ (+)

g and θ (−)
g values.

Thus it is a qualitative indication of the fact that glass transi-
tion range is the same for a cooling and heating run at con-
stant rate of temperature change. The value of β equal to
β = 0.1 results in much lower values of the glass transition
width, θ (+)

g − θ (−)
g , than the analytical (and “visual” one, from

having a close look of ξ -curves) estimates. The value of β

equal to β = 0.01 seems to be reasonable for the computa-
tions provided next and was used in this work. The criterion
can be formulated as a 1% deviation of the respective ratios
from their equilibrium (for upper boundary) and frozen-in (for
lower boundary) values.

B. Results

The results of the computations obtained based on the
first of the methods of determination of the glass transition
boundaries are presented in Fig. 6. In this figure, the upper
(θmax) and lower (θmin) values (a) and the width (b) of the
glass transition interval are shown. In Fig. 7, both the first (a)
and the second (b) method of specification of the boundaries
of the glass transition interval are employed and specified as
determined via the numerical model computations. In the fig-
ure, in addition, a comparison with the analytical results based
on Eqs. (4)–(6) is given. The following conclusions can be
derived from this figure: (i) Qualitatively, the results of de-
termination of the glass transition temperature and the upper
and lower boundaries of the glass transition range obtained
via Eqs. (4)–(6) and the specification of the parameters α(+)

and α(−) via Eq. (7) are in excellent agreement with the re-
sults of numerical model computations. (ii) Quantitatively, the
agreement depends both on the method of determination of
the boundaries of the glass transition interval and the glass
transition temperature in the numerical computations and on
the specific way of selection of the parameters α(+) and α(−)

(for the way of determination of the glass transition temper-
ature as employed in the numerical computations cf., Refs. 8
and 9).

In discussing these results, we can thus conclude first that
the relations of the type as given by Eqs. (4)–(6) and their con-
sequences describe in an essentially correct way both the de-
pendence of the glass transition temperature and the width of
the glass transition temperature on cooling and heating rates.
However, as well-known, while the glass transition interval is
essentially determined by a relation of the type of Eq. (4), dif-
ferent specific definitions of the glass transition temperature
are employed leading frequently to quantitatively quite differ-
ent results (cf., e.g., Refs. 1, 12, 13, 18, and 19). In this way,
having in mind these uncertainties, we can generalize Eq. (4)
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(a)

(b)

FIG. 6. Dependence of the upper and lower values and the width of the glass
transition interval as obtained from numerical computations. Here the nota-
tion θ = T/Tm (Tm is the melting temperature) are employed (for the details
of the computations see also Refs. 8, 9, and 14). The values of the parameters
are: Tm = 750 K, T0 = Tm/2, B = 5Tm.

writing it in the form

Tg : τR
∼= τT =⇒

{
1

T

∣∣∣∣dT

dt

∣∣∣∣ τR

}∣∣∣∣
T =Tg

= α(Tg ), (42)

where α(Tg ) is of the order but not necessarily equal to one.
In addition, Eq. (7) is a quite reasonable but, anyway, an as-
sumption, other assumptions may be more appropriate. In this
way, applying above analytical expressions, Eqs. (4)–(6) (or
its generalization Eq. (42)) to the description of experimental
data or theoretical results like those discussed in the present
section, a method of determination of the values of the pa-
rameters α(Tg ), α(+) and α(−) has to be developed which is in
agreement with the method of determination of the glass tran-
sition temperature and the boundaries of the glass transition
range utilized.

For example, in application to the interpretation of exper-
imental data, this can be done as follows: Provided one has
determined Tg, T (+)

g , and T (−)
g for one given cooling and heat-

ing rate, then – specifying in a definite way the glass transition
temperature and the upper and lower boundaries of the glass

(a)

(b)

FIG. 7. Comparison of analytical relations and numerical computations: In
this figure, both the first (a) and the second (b) methods of specification of the
boundaries of the glass transition interval are employed and specified based
on the results of the numerical computations (dashed curves). In the figure,
in addition, a comparison with the analytical results based on Eqs. (4)–(6) is
given (full curves).

transition interval – the values of α(+) (α(+) ∼= 10−3), α(−)

(α(−) ∼= 0.33), and α(Tg ) (α(Tg) ∼= 0.016) can be determined
comparing these results with the analytical expressions given
by Eqs. (5), (6), and (42). Having obtained the respective val-
ues of these parameters, these equations can be used then as
estimates of the values of Tg and the boundaries of the glass
transition interval for the other values of cooling and heating
rates employing the same relations. Similarly, performing nu-
merical computations employing an appropriate model of the
system under consideration, one can proceed in the same way
by determining the respective parameters α based on compu-
tations for one cooling and heating rate and employing the
results then for estimates of the behavior at other values of
the cooling and heating rates.

One example in this respect, where such approach is re-
alized, is demonstrated in Fig. 8. Here it is shown that with
appropriately chosen values of α(+), α(−), and α(Tg ) the glass
transition temperature and the boundaries of the glass transi-
tion range can be approximated also quantitatively quite well
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(a)

(b)

FIG. 8. Comparison of analytical relations and numerical computations:
Here it is shown that with appropriately chosen values of α(+), α(−), and
α(Tg ) (cf., Eqs. (5), (6), and (42)) the glass transition temperature and the
boundaries of the glass transition range can be approximated also quantita-
tively correctly by varying the rate of change of temperature by more than ten
decades.

by varying the rate of change of temperature by more than ten
decades. Note that the relative values of α

(+)
rel = (α(+)/α(Tg ))

∼= 0.05 and α
(−)
rel = (α(−)/α(Tg )) ∼= 16 referred to the revised

definition of Tg via Eq. (42) are quite similar to the original
estimates of α(+) and α(−) as given by Eq. (7) for the original
definition of Tg via Eq. (4).

IV. DETERMINATION OF THE WIDTH OF THE GLASS
TRANSITION INTERVAL: AN ALTERNATIVE
THERMODYNAMICALLY BASED ANALYTICAL
APPROACH

A. Basic equations

In the preceding analysis, we have developed and applied
two methods of determination of the boundaries and the width
of the glass transition interval in dependence on cooling and
heating rates. The first of them consists in the application
of the basic kinetic criteria of glass-formation described by

Eqs. (4)–(7) (Sec. II) or its modification as discussed in
Sec. III B. The second approach involves a numerical integra-
tion of the set of basic kinetic equations for the description of
the glass transition employing an appropriate model system as
described in Sec. III A. In the present section, we would like
to return to a derivation of analytical estimates of the width
of the glass transition interval based not directly on the ki-
netic criteria of glass formation but on some general relations
describing the glass transition derived in the framework of
the thermodynamics of irreversible processes. Of course, both
methods are not independent but interrelated.

The starting point of this part of our analysis is illus-
trated in Fig. 1. In this figure, the entropy production is shown
as a function of reduced temperature for some given (con-
stant absolute) value of the cooling and heating rate. Since
above the glass transition range, the system is found in a
(meta)stable thermodynamic equilibrium, in this range the en-
tropy production is equal to zero. Similarly, once the system
is frozen-in to a glass, irreversible processes may not proceed
and the entropy production is equal to zero, again. Values
of the entropy production different from zero can be found
consequently only in the glass transition interval. As already
discussed, there exists some freedom in the definition of the
glass transition temperature.1, 12, 13, 18, 19 In the present section,
we consider mainly cooling processes and identify the glass
transition temperature with the position of the maximum of
entropy production. This particular definition of the temper-
ature of glass transition employed here can be denoted as a
special version of a thermodynamically based definition (cf.,
also Refs. 10–13). The width of the glass transition range we
will estimate then by expanding the expression for the entropy
production into a truncated Taylor series with respect to tem-
perature up to second-order terms in the deviations from Tg.
In a general form, we may then write

diS

dT
=

(
diS

dT

)∣∣∣∣
T =Tg

+ 1

1!

d

dT

(
diS

dT

)∣∣∣∣
T =Tg

(T − Tg)

+ 1

2!

d2

dT 2

(
diS

dT

)∣∣∣∣
T =Tg

(T − Tg)2. (43)

The first-order derivative of the entropy production is equal
to zero at Tg and the second-order derivative is by necessity
negative (as noted, we identify Tg with the maximum of the
entropy production). The half-width of the glass transition in-
terval is determined then by the condition (diS/dT) = 0 and for
the width of the glass transition range we obtain the general
result

T (+)
g − T (−)

g = 2

√√√√√√√√
(

diS

dT

)∣∣∣∣
T =Tg

−1
2

d2

dT 2

(
diS

dT

)∣∣∣∣
T =Tg

. (44)

It follows that the width of the glass transition region is pro-
portional to the square root of the entropy production at Tg.
In the subsequent analysis in this section, we would like to
derive some further conclusions.

Restricting the analysis, again, to glass-forming systems
which can be described by one additional structural order
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parameter, the entropy production due to irreversible pro-
cesses in the system may be expressed as1, 2, 14, 20, 21

diS

dT
=

(
A

T

)
dξ

dT
. (45)

Here the change of structural order parameter is described for
the processes considered by us by

dξ

dT
= − 1

qτR

(ξ − ξe), q = dT

dt
, (46)

again, where the affinity is given, approximately, by

A = −G(2)
e (ξ − ξe). (47)

For the model system, employed already in Sec. III, we can
write approximately

A ∼= −RT

ξe

(ξ − ξe). (48)

We will utilize here this model as well having shown its ability
to describe a large variety of glass-forming systems in an, at
least, qualitatively widely correct way.1, 2

These general thermodynamic relations can be supple-
mented by two relations which follow from the general kinetic
criterion for glass transition. In the glass transition range, the
relation Eq. (4) has to be fulfilled. Multiplying this relation
by temperature, T, and taking the derivative with respect to
temperature, we obtain∣∣∣∣q dτ

dT

∣∣∣∣
T =Tg

∼= 1. (49)

This relation has been derived for another model system for
the first time by Volkenstein and Ptizyn.22, 23 In addition,
Eqs. (2)–(4) yield{

T

(ξ − ξe)

dξ

dT

}∣∣∣∣
T =Tg

∼= −1. (50)

B. Computations

With above relations, we may write

diS

dT
= R

qτR

(ξ − ξe)2

ξe

. (51)

The extremums of the entropy production obey the relations

d

dT

diS

dT
= R

{[
− 1

(qτR)2

d

dT
(qτR)

]
(ξ − ξe)2

ξe

+ 1

qτR

d

dT

[
(ξ − ξe)2

ξe

]}
= 0, (52)

d

dT

diS

dT
= diS

dT

{[
− d

dT
ln(qτR)

]
+ d

dT
ln

[
(ξ − ξe)2

ξe

]}
= 0,

(53)

or, equivalently,

d

dT

diS

dT
= diS

dT

{
d

dT

[
ln

(
1

qτR

(ξ − ξe)2

ξe

)]}
= 0. (54)

The extremums are characterized, consequently, by two dif-
ferent possible relations, by either

diS

dT
= 0 (55)

or

d

dT

[(
1

qτR

(ξ − ξe)2

ξe

)]∣∣∣∣
T =Tg

= 0. (56)

The latter relation can be written also in the form

d

dT
ln(qτR) = d

dT
ln

[
(ξ − ξe)2

ξe

]
. (57)

With the Volkenstein-Ptizyn relation, Eq. (49), we obtain

qτR
∼=

{
d

dT

[
ln

(
(ξ − ξe)2

ξe

)]}−1

(58)

for states in the vicinity of Tg. Comparing this result with the
basic kinetic criterion for the determination of the glass tran-
sition temperature, Eq. (4), we get

Tg
∼=

{
d

dT

[
ln

(
(ξ − ξe)2

ξe

)]}−1

. (59)

The second-order derivatives of the entropy production
with respect to temperature can be written according to
Eq. (54) as

d2

dT 2

diS

dT
= d

dT

(
diS

dT

) {
d

dT

[
ln

(
1

qτR

(ξ − ξe)2

ξe

)]}
+ diS

dT

{
d2

dT 2

[
ln

(
1

qτR

(ξ − ξe)2

ξe

)]}
. (60)

The first term on the right hand side of this equation is equal
to zero at Tg and the second term is by necessity negative
(maximum of the entropy production). By substitution of
Eq. (60) into Eq. (44), we get for the width of the glass tran-
sition interval the relation

T (+)
g − T (−)

g = 2

√√√√√√ 1

−1

2

d2

dT 2

[
ln

(
1

qτR

(ξ − ξe)2

ξe

)]∣∣∣∣
T =Tg

.

(61)
This relation can be directly employed for the computation of
the glass transition range knowing the temperature dependen-
cies of ξ , ξ e, and τR.

V. DISCUSSION

In the present analysis, we derived general relations spec-
ifying the boundaries and the width of the glass transition in-
terval in cooling and heating. It was supposed in the analysis
that the cooling and heating rates are constant and have the
same absolute values in cooling and heating and that the re-
laxation time depends only weakly on the structural order pa-
rameter so that such dependence can be neglected. The gen-
eral relations, Eqs. (4), (5), and (6) retain their validity, of
course, also when these restrictions are not imposed. How-
ever, in such more general cases, the boundaries of the glass
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transition range and the glass transition temperature will be,
in general, different for cooling and heating.

As already mentioned, similar considerations can be ap-
plied when the glass transition is realized by a change of other
control parameters, for example, by an increase of pressure. In
addition, the method can be employed in a somewhat modi-
fied form also to dynamic glass transitions if the state of the
system at given pressure and temperature is changed by some
external perturbations with a characteristic angular frequency,
ω.4 In such cases, the characteristic time of change of the ex-
ternal control parameter, τD, is given by τD

∼= 1/ω resulting
in (Ref. 3),

ωg : τD
∼= τR =⇒ ωτR|ω=ωg

∼= 1 (62)

as the relation for the determination of the value of the an-
gular frequency, at which the dynamic glass transition takes
place. Performing the experiments at different temperatures,
one can easily arrive then at a relation connecting the value
of ω at the dynamic glass transition and the current value
of temperature, Tg. Assuming the Arrhenius law for the de-
scription of relaxation, Eq. (8), we arrive in this simple case
at a relation of the form as derived first by Bartenev (cf.,
Ref. 4),

A

Tg

= − (ln τ0 + ln ω) . (63)

On the other hand, for any values of pressure and tem-
perature of the undisturbed state, we can pose the question of
the width of the interval of ω-values, where the response of
the system to external perturbations is qualitatively changed.
Similarly to Eqs. (5) and (6), we may then write

ω(−)
g : τD

∼= α(−)τR =⇒ ω(−)
g τR(Tg) ∼= α(−) � 1,

(64)

ω(+)
g : τD

∼= α(+)τR =⇒ ω(+)
g τR(Tg) ∼= α(+) � 1.

(65)

As first estimates of the values of α(+) and α(−) we could em-
ploy again Eq. (7). Equations (62)–(65) then yield

ω(+)
g − ω(−)

g
∼= α(+)ωg (66)

or, for Arrhenius relaxation,

ln(ω(+)
g − ω(−)

g ) ∼= ln

(
α(+)

τ0

)
− A

Tg

. (67)

In the case, relaxation is described by the VFT equation, we
would get instead the slightly modified relation

ln(ω(+)
g − ω(−)

g ) ∼= ln

(
α(+)

τ0

)
− B

Tg − T0
. (68)

A detailed comparison of latter results with experimental
studies is in preparation.
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