Άρθρα συναφή με τα ερευνητικά μου ενδιαφέροντα
[sort by date]
- Charge build-up in ice layers condensing on liquid nitrogen traps
E. Elliott, T. I. Pritchard, M. J. Hampshire and R. D. Tomlinson
Vacuum 19, 366 (1969)
[DOI: 10.1016/S0042-207X(69)80080-1] [PDF]
- Spontaneous polarization of condensing carbon monoxide and other gases with an electrical dipole moment
K. Kutzner
Thin Solid Films 14, 49-61 (1971)
[DOI: 10.1016/0040-6090(72)90369-0] [PDF]
- Electrical effects during condensation and phase transitions of ice
Lars Onsager, David L. Staebler and Sergio Mascarenhas
J. Chem. Phys. 68, 3823-3828 (1978)
[DOI: 10.1063/1.436189] [PDF]
- Electric charge in binary mixtures of non-polar molecules cryocondensed at low temperatures
Bogdan Sujak, Janusz Chrzanowski
Thin Solid Films 71, 47-51 (1980)
[DOI: 10.1016/0040-6090(80)90182-0] [PDF]
- The electret effect in polar molecule condensates in the temperature range 90-230 K
Janusz Chrzanowski and Bogdan Sujak
Thin Solid Films 79, 101-111 (1981)
[DOI: 10.1016/0040-6090(81)90266-2] [PDF]
- Thermally stimulated surface currents in CH3OH cryocondensates near the polymorphic phase transformation
Janusz Chrzanowski and Bogdan Sujak
Thin Solid Films 101, 123-130 (1983)
[DOI: 10.1016/0040-6090(83)90264-X] [PDF]
- Electric charge generation in benzene-water mixtures during condensation at low temperatures
Janusz Chrzanowski and Bogdan Sujak
Thin Solid Films 103, 417-421 (1983)
[DOI: 10.1016/0040-6090(83)90456-X] [PDF]
- Electric domains created in polarized molecular condensates during condensation onto a substrate with a one dimensional temperature gradient
J. Chrzanowski and B. Sujak
Cryogenics 23, 91-94 (1983)
[DOI: 10.1016/0011-2275(83)90121-2] [PDF]
- Electrical effects accompanying the phase transitions in ethanol cryocondensed thin layers
W. J. Sobolewski
Phase Transitions 62, 95-104 (1997)
[DOI: 10.1080/01411599708220062] [PDF]
- Comment on "Ferroelectricity in Water Ice"
R. W. Whitworth
J. Phys. Chem. B 103, 8192-8193 (1999)
[DOI: 10.1021/jp9906334] [PDF]
- Reply to Comment on "Ferroelectricity in Water Ice"
J. P. Cowin and M. J. Iedema
J. Phys. Chem. B 103, 8194 (1999)
[DOI: 10.1021/jp9911144] [PDF]
- Condensed-matter science: Ferroelectric ice
Steven T. Bramwell
Nature 397, 212-213 (1999)
[DOI: 10.1038/16594] [PDF]
- Surface-Induced Ferroelectric Ice on Pt(111)
Xingcai Su, L. Lianos, Y. Ron Shen, and Gabor A. Somorjai
Phys. Rev. Lett. 80, 1533-1536 (1998)
[DOI: 10.1103/PhysRevLett.80.1533] [PDF]
- Spontaneous Dipole Alignment in Films of N2O
Richard Balog, P. Cicman, N. C. Jones, and D. Field
Phys. Rev. Lett. 102, 073003 (2009)
[DOI: 10.1103/PhysRevLett.102.073003] [PDF]
- Transmission and Trapping of Cold Electrons in Water Ice
Richard Balog, Peter Cicman, David Field, Linda Feketeov, Kristin Hoydalsvik, Nykola C. Jones, Thomas A. Field, Jean-Pierre Ziesel
J. Phys. Chem. A 115, 6820-6824 (2011)
[DOI: 10.1021/jp110475q] [PDF]
- A new form of spontaneously polarized material
Oksana Plekan, Andrew Cassidy, Richard Balog, Nykola C. Jones and David Field
Phys. Chem. Chem. Phys. 13, 21035-21044 (2011)
[DOI: 10.1039/C1CP22310K] [PDF]
- Spontaneous electric fields in films of cis-methyl formate
Oksana Plekan, Andrew Cassidy, Richard Balog, Nykola C. Jones and David Field
Phys. Chem. Chem. Phys. 14, 9972-9976 (2012)
[DOI: 10.1039/c2cp41229b] [PDF]
- Spontaneous electric fields in films of CF3Cl, CF2Cl2 and CFCl3
Andrew Cassidy, Oksana Plekan, Richard Balog, Nykola C. Jones and David Field
Phys. Chem. Chem. Phys. 15, 108-113 (2013)
[DOI: 10.1039/c2cp43138f] [PDF]
- Spontaneous electric fields in solid films: spontelectrics
D. Field, O. Plekan, A. Cassidy, R. Balog, N.C. Jones & J. Dunger
Int. Rev. Phys. Chem. 32, 345-392 (2013)
[DOI: 10.1080/0144235X.2013.767109] [PDF]
- Electric Field Structures in Thin Films: Formation and Properties
Andrew Cassidy, Oksana Plekan, Richard Balog, Jack Dunger, and David Field
J. Phys. Chem. A 119, 6615-6621 (2014)
[DOI: 10.1021/jp503332x] [PDF]
- Investigations into the nature of spontelectrics: nitrous oxide diluted in xenon
Andrew Cassidy, Oksana Plekan, Jack Dunger, Richard Balog, Nykola C. Jones, Jerome Lasne, Alexander Rosu-Finsen, Martin R. S. McCoustra and David Field
Phys. Chem. Chem. Phys. 16, 23843-23853 (2014)
[DOI: 10.1039/c4cp03659j] [PDF]
- Spontaneously electrical solids in a new light
Jerome Lasne, Alexander Rosu-Finsen, Andrew Cassidy, Martin R. S. McCoustra and David Field
Phys. Chem. Chem. Phys. 17, 20971-20980 (2015)
[DOI: 10.1039/c5cp03174e] [PDF]
- Spontaneous electric fields in solid carbon monoxide
Jerome Lasne, Alexander Rosu-Finsen, Andrew Cassidy, Martin R. S. McCoustra and David Field
Phys. Chem. Chem. Phys. 17, 30177-30187 (2015)
[DOI: 10.1039/C5CP04536C] [PDF]
- Spontaneous polarization of solid CO on water ices and some astrophysical implications
Alexander Rosu-Finsen, Jerome Lasne, Andrew Cassidy, Martin R. S. McCoustra, and David Field
Phys. Chem. Chem. Phys. 18, 5159-4171 (2016)
[DOI: 10.1039/c5cp07049j] [PDF]
- Dipole-Oriented Molecular Solids Can Undergo a Phase Change and Still Maintain Electrical Polarization
Andrew Cassidy, Mads R. V. Jorgensen, Alexander Rosu-Finsen, Jerome Lasne, Jakob H. Jorgensen, Artur Glavic, Valeria Lauter, Bo B. Iversen, Martin R. S. McCoustra, and David Field
J. Phys. Chem. C 120, 14130-24136 (2016)
[DOI: 10.1021/acs.jpcc.6b07296] [PDF]
- Enabling star formation via spontaneous molecular dipole orientation in icy solids
Alexander Rosu-Finsen, Jerome Lasne, Andrew Cassidy, Martin R. S. McCoustra, and David Field
Astroph. J. 832, 1-6 (2016)
[DOI: 10.3847/0004-637X/832/1/1] [PDF]
- A review of recent progress in understanding the spontelectric state of matter
Oksana Plekan, Alexander Rosu-Finsen, Andrew M. Cassidy, Jérôme Lasne, Martin R.S. McCoustra, and David Field
Eur. Phys. J. D 71, 162 (2017)
[DOI: 10.1140/epjd/e2017-80048-3] [PDF]
- Wannier-Mott Excitons in Nanoscale Molecular Ices
Y.-J. Chen, G.M. Munoz Caro, S. Aparicio, A. Jimenez-Escobar, J. Lasne, A. Rosu-Finsen, M.R.S. McCoustra, A.M. Cassidy, and D. Field
Phys. Rev. Lett. 119, 157703 (2017)
[DOI: 10.1103/PhysRevLett.119.157703] [PDF]
- Non-linear and non-local behaviour in spontaneously electrical solids
M. Roman, S. Taj, M. Gutowski, M. R. S. McCoustra, A. C. Dunn, Z. G. Keolopile, A. Rosu-Finsen, A. M. Cassidy and D. Field
Phys. Chem. Chem. Phys. 20, 5112-5116 (2018)
[DOI: 10.1039/c7cp08489g] [PDF]
- Assigning a structural motif using spontaneous molecular dipole orientation in thin films
M. Roman, A. Dunn, S. Taj, Z. G. Keolopile, A. Rosu-Finsen, M. Gutowski, M. R. S. McCoustra, A. M. Cassidy and D. Field
Phys. Chem. Chem. Phys. 20, 29038-29044 (2018)
[DOI: 10.1039/C8CP06010J] [PDF]
- The optical absorption spectra of spontaneously electrical solids: the case of nitrous oxide
Andrew Cassidy, Rachel L. James, Anita Dawes, Jérôme Lasne and David Field
Phys. Chem. Chem. Phys. 21, 1190-1197 (2019)
[DOI: 10.1039/c8cp05746j] [PDF]
- Librating dipoles as a probe of spontaneously electrical films and as a source of THz radiation
D. Field
Phys. Chem. Chem. Phys. 21, 26606-26614 (2019)
[DOI: 10.1039/C9CP05746C] [PDF]
- Comment on 'Spontaneous Polarization of Cryo-Deposited Films for Five Normal Saturated Monohydroxy Alcohols, CnH2n+1OH, n = 1-5'
David Field and Andrew Cassidy
J. Phys. Chem. B 125, 7568-7569 (2021)
[DOI: 10.1021/acs.jpcb.1c02361] [PDF]
- Low temperature aging in a molecular glass: the case of cis-methyl formate
Andrew Cassidy, Mads R. V. Jørgensen, Artur Glavic, Valeria Lauter, Oksana Plekan, David Field
Phys. Chem. Chem. Phys. 23, 15719-15726 (2021)
[DOI: 10.1039/D1CP01332G] [PDF]
- Hidden singularities in spontaneously polarized molecular solids
Andrew Cassidy, Frank P. Pijpers, David Field
J. Chem. Phys. 158, 144501 (2023)
[DOI: 10.1063/5.0138642] [PDF]
- A Spontaneously Electrical State of Matter
Andrew Cassidy, Martin R. S. McCoustra, David Field
Acc. Chem. Res. 56, (2023)
[DOI: 10.1021/acs.accounts.3c00094] [PDF]
- The role of thermal history on spontaneous polarization and phase transitions of amorphous solid water films studied by contact potential difference measurements
Roey Sagi, Michelle Akerman, Sujith Ramakrishnan, and Micha Asscher
J. Chem. Phys. 153, 144702 (2020)
[DOI: 10.1063/5.0017712] [PDF] [supplemental]
- Corrected electrostatic model for dipoles adsorbed on a metal surface
Brian L. Maschhoff and James P. Cowin
J. Chem. Phys. 101, 8138-8151 (1994)
[DOI: 10.1063/1.468241] [PDF]
- Two-Stage Solid-Phase Transition of Cubic Ice to Hexagonal Ice: Structural Origin and Kinetics
Shu-hui Guan, Cheng Shang, Si-Da Huang, Zhi-Pan Liu
J. Phys. Chem. C 122, 29009-29016 (2018)
[DOI: 10.1021/acs.jpcc.8b08896] [PDF]
- How many amorphous ices are there?
Thomas Loerting, Katrin Winkel, Markus Seidl, Marion Bauer, Christian Mitterdorfer, Philip H. Handle, Christoph G. Salzmann, Erwin Mayer, John L. Finney and Daniel T. Bowron
Phys. Chem. Chem. Phys. 13, 8783-8794 (2011)
[DOI: 10.1039/c0cp02600j] [PDF]
- Ice structures, patterns, and processes: A view across the icefields
Thorsten Bartels-Rausch Vance Bergeron, Julyan H. E. Cartwright, Rafael Escribano, John L. Finney, Hinrich Grothe, Pedro J. Gutierrez, Jari Haapala, Werner F. Kuhs, Jan B.C. Pettersson, Stephen D. Price, C. Ignacio Sainz-Diaz, Debbie J. Stokes, Giovanni Strazzulla, Erik S. Thomson, Hauke Trinks, Nevin Uras-Aytemiz
Rev. Modern Phys. 84, 885-944 (2012)
[DOI: 10.1103/RevModPhys.84.885] [PDF]
- Dependence of the width of the glass transition interval on cooling and heating rates
Jurn W. P. Schmelzer and Timur V. Tropin
J. Chem. Phys. 138, 034507 (2013)
[DOI: 10.1063/1.4775802] [PDF]
- Colloquium: Water's controversial glass transitions
Katrin Amann-Winkel, Roland Bohmer, Franz Fujara, Catalin Gainaru, Burkhard Geil, Thomas Loerting
Rev. Modern Phys. 88, 011002 (2016)
[DOI: 10.1103/RevModPhys.88.011002] [PDF]
- Generation of strong electric fields in an ice film capacitor
Sunghwan Shin, Youngsoon Kim, Eui-seong Moon, Du Hyeong Lee, Hani Kang, and Heon Kanga
J. Chem. Phys. 139, 074201 (2013)
[DOI: 10.1063/1.4818535] [PDF]
- Effect of association complexes on the glass transition in organic halide mixtures
Arnold V. Lesikar
J. Phys. Chem. 80, 1005-1011 (1976)
[DOI: 10.1021/j100550a018] [PDF]
- Glass transitions of organic compounds. III. Cellulose substrate technique and aliphatic alcohols
J. V. Koleske and J. A. Faucher
Polymer Engineering and Science 19, 716-721 (1979)
[DOI: 10.1002/pen.760191011] [PDF]
- Dynamical heterogeneity in glassy n-butanol
S. Yu. Grebenkin and V. M. Syutkin
Phys. Rev. B 76, 054202 (2007)
[DOI: 10.1103/PhysRevB.76.054202] [PDF]
- Structural and thermodynamic studies of n-butanol
I. M. Shmyt'ko, R. J. Jimenez-Rioboo, M. Hassaine and M. A. Ramos
J. Phys. Condens. Matter 22, 195102 (2010)
[DOI: 10.1088/0953-8984/22/19/195102] [PDF]
- Structure determination of the crystalline phase of n-butanol by powder X-ray diffraction and study of intermolecular associations by Raman spectroscopy
Patrick Derollez, Alain Hedoux, Yannick Guinet, Florence Danede and Laurent Paccou
Acta Cryst. B 69, 195-202 (2013)
[DOI: 10.1107/S2052519213004843] [PDF]
- Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray diffraction study
Alain Hedoux, Yannick Guinet, L. Paccou, P. Derollez, and F. Danede
J. Chem. Phys. 138, 214506 (2013)
[DOI: 10.1063/1.4808159] [PDF]
- Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature
Panos Papagiannakopoulos, Xiangrui Kong, Erik S. Thomson, Nikola Markovic, and Jan B. C. Pettersson
J. Phys. Chem. C 117, 6678-6685 (2013)
[DOI: 10.1021/jp4003627] [PDF]
- Nucleation of ethanol, propanol, butanol, and pentanol: A systematic experimental study along the homologous series
Alexandra A. Manka, Jan Wedekind, David Ghosh, Kristina Höhler, Judith Wölk and and Reinhard Strey
J. Chem. Phys. 137, 054316 (2012)
[DOI: 10.1063/1.4739096] [PDF]
- Energetics of Adsorbed Methanol and Methoxy on Pt(111) by Microcalorimetry
Eric M. Karp, Trent L. Silbaugh, Matthew C. Crowe, and Charles T. Campbell
J. Am. Chem. Soc. 134, 20388-20395 (2012)
[DOI: 10.1021/ja307465u] [PDF]
- Measurement of thickness of a thin film by means of laser interference at many incident angles
Kazuhiko Ishikawa, Hitomi Yamano, Ki-ichiro Kagawa, Katsuhiko Asada, Koichi Iwata, Masahiro Ueda
Opt. Laser Eng. 41, 19-29 (2004)
[DOI: 10.1016/S0143-8166(02)00146-X] [PDF]
- Density and index of refraction of water ice films vapor deposited at low temperatures
M. S. Westley, G. A. Baratta, and R. A. Baragiola
J. Chem. Phys. 108, 3321-3326 (1998)
[DOI: 10.1063/1.475730] [PDF]
- Effect of microstructure on spontaneous polarization in amorphous solid water films
Caixia Bu, Jianming Shi, Ujjwal Raut, Emily H. Mitchell, and Raul A. Baragiola
J. Chem. Phys. 142, 134702 (2015)
[DOI: 10.1063/1.4916322] [PDF]
- Proton transport in ice at 30-140 K: Effects of porosity
Caixia Bu and Raul A. Baragiola
J. Chem. Phys. 143, 074702 (2015)
[DOI: 10.1063/1.4928506] [PDF]
- Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices
K. Isokoski, J.-B. Bossa, T. Triemstra and H. Linnartz
Phys. Chem. Chem. Phys. 16, 3456-3465 (2014)
[DOI: 10.1039/c3cp54481h] [PDF]
- Small-angle neutron scattering study of micropore collapse in amorphous solid water
Christian Mitterdorfer, Marion Bauer, Tristan G. A. Youngs, Daniel T. Bowron, Catherine R. Hill, Helen J. Fraser, John L. Finney and Thomas Loerting
Phys. Chem. Chem. Phys. 16, 16013 (2014)
[DOI: 10.1039/c4cp00593g] [PDF]
- Gaseous "nanoprobes" for detecting gas-trapping environments in macroscopic films of vapor-deposited amorphous ice
Sukhpreet K. Talewar, Siriney O. Halukeerthi, Regina Riedlaicher, Jacob J. Shephard, Alexander E. Clout, Alexander Rosu-Finsen, Gareth R. Williams, Arne Langhoff, Diethelm Johannsmann, and Christoph G. Salzmann
J. Chem. Phys. 151, 134505 (2019)
[DOI: 10.1063/1.5113505] [PDF]
- Using the C-O stretch to unravel the nature of hydrogen bonding in low-temperature solid methanol-water condensates
Anita Dawes, Nigel John Mason and Helen Jane Fraser
Phys. Chem. Chem. Phys. 18, 1245 (2016)
[DOI: 10.1039/c5cp05299h] [PDF]
- Distribution of Weakly Interacting Atoms and Molecules in Low-Temperature Amorphous Solid Water
Michelle Sykes Akerman, Roey Sagi, Hiley Iny, and Micha Asscher
J. Phys. Chem. A 126, 8037-8048 (2022)
[DOI: 10.1021/acs.jpca.2c06137] [PDF]
- Growth and structure of amorphous ice condensates: A computational study. II
V. Buch
J. Chem. Phys. 96, 3814 (1992)
[DOI: 10.1063/1.461886] [PDF]
- Structure of ice multilayers on metals
H. Witek and V. Buch
J. Chem. Phys. 110, 3168 (1999)
[DOI: 10.1063/1.477912] [PDF]
- The dielectric constant and electric moment of some alcohol vapors
John B. Miles, Jr.
Phys. Rev. 34, 964 (1929)
[DOI: 10.1103/PhysRev.34.964] [PDF]
- Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols
J. Barthel, K. Bachhuber, R. Buchner, H. Hetzenauer
Chem. Phys. Lett. 165, 369-373 (1990)
[DOI: 10.1016/0009-2614(90)87204-5] [PDF]
- Two glass transitions in ethanol: a comparative dielectric relaxation study of the supercooled liquid and the plastic crystal
S. Benkhof, A. Kudlik, T. Blochowicz and E. Rössler
J. Phys.: Condens. Matter 10, 8155-8177 (1998)
[DOI: 10.1088/0953-8984/10/37/005] [PDF]
- High frequency permittivity and its use in the investigation of solution properties
J. Barthel and R. Buchner
Pure Appl. Chem. 63, 1473-1482 (1991)
[DOI: 10.1351/pac199163101473] [PDF]
- Comparative dielectric study of monohydric alcohols with terahertz time-domain spectroscopy
Yoshiki Yomogida, Yuki Sato, Ryusuke Nozaki, Tomobumi Mishina, Junichiro Nakahara
J. Molec. Struct. 981, 173 (2010)
[DOI: 10.1016/j.molstruc.2010.08.002] [PDF]
- Does water belong to the homologous series of hydroxyl compounds H(CH2)nOH?
Jolanta Swiergiel and Jan Jadzyn
Phys. Chem. Chem. Phys. 19, 10062-10068 (2017)
[DOI: 10.1039/c7cp00750g] [PDF]
- Broadband terahertz dielectric spectroscopy of alcohols
Sohini Sarkar, Debasis Saha, Sneha Banerjee, Arnab Mukherjee, Pankaj Mandal
Chem. Phys. Lett. 678, 65-71 (2017)
[DOI: 10.1016/j.cplett.2017.04.026] [PDF]
- Permittivity at Infinite Frequency
Yu. A. Lyubimov
Russ. J. Phys. Chem. 80, 2033-2040 (2006)
[DOI: 10.1134/S0036024406120284] [PDF]
- Cryopumping
J. p. Dawson and J. D. Haygood
Cryogenics 5, 57 (1965)
[DOI: 10.1016/S0011-2275(65)80002-9] [PDF]
- From adsorption to condensation: the role of adsorbed molecular clusters
Sima Yaghoubian, Seyed Hadi Zandavi and C. A. Ward
Phys. Chem. Chem. Phys. 18, 21481-21490 (2016)
[DOI: 10.1039/c6cp02713j] [PDF]
- Water Polarization under Thermal Gradients
Fernando Bresme, Anders Lervik, Dick Bedeaux, and Signe Kjelstrup
Phys. Rev. Lett. 101, 020602 (2008)
[DOI: 10.1103/PhysRevLett.101.020602] [PDF]
- Thermomolecular Orientation of Nonpolar Fluids
Frank Romer, Fernando Bresme, Jordan Muscatello, Dick Bedeaux, and J. Miguel Rubi
Phys. Rev. Lett. 108, 105901 (2012)
[DOI: 10.1103/PhysRevLett.108.105901] [PDF]
- Water under temperature gradients: polarization effects and microscopic mechanisms of heat transfer
Jordan Muscatello, Frank Römer, Jonas Sala and Fernando Bresme
Phys. Chem. Chem. Phys. 13, 19970-19978 (2011)
[DOI: 10.1039/c1cp21895f] [PDF]
- The rich phase behavior of the thermopolarization of water: from a reversal in the polarization, to enhancement near criticality conditions
Irene Iriarte-Carretero, Miguel A. Gonzalez, Jeff Armstrong, Felix Fernandez-Alonso and Fernando Bresme
Phys. Chem. Chem. Phys. 18, 19894-19901 (2016)
[DOI: 10.1039/c6cp03082c] [PDF]
- Polarization of acetonitrile under thermal fields via non-equilibrium molecular dynamics simulations
Oliver R. Gittus, Pablo Albella, Fernando Bresme
J. Chem. Phys. 153, 204503 (2020)
[DOI: 10.1063/5.0025148] [PDF]
- Non-equilibrium simulations of thermally induced electric fields in water
P. Wirnsberger, D. Fijan, A. Saric, M. Neumann, C. Dellago, and D. Frenkel
J. Chem. Phys. 144, 224102 (2016)
[DOI: 10.1063/1.4953036] [PDF]
- A theoretical study on spontaneous dipole orientation in ice structures
S. Rasoul Hashemi, Martin R. S. McCoustra, Helen J. Fraser, Gunnar Nyman
Phys. Chem. Chem. Phys. 24, 12922-12925 (2022)
[DOI: 10.1039/D2CP00360K] [PDF]
- On the Self-association of the Normal Alcohols and the Glass Transition in Alcohol-Alcohol Solutions
Arnold V. Lesikar
J. Solution Chem. 6, 81-93 (1977)
[DOI: 10.1007/BF00643434] [PDF]
- Experimental study of the nature of the glass transition process in monohydroxy alcohols
S. S. N. Murthy and S. K. Nayak
J. Chem. Phys. 99, 5362 (1993)
[DOI: 10.1063/1.466187] [PDF]
- Changes in mobility of plastic crystal ethanol during its transformation into the monoclinic crystal state
Alejandro Sanz, Aurora Nogales, Ines Puente-Orench, Monica Jimenez-Ruiz, and Tiberio A. Ezquerra
J. Chem. Phys. 140, 054510 (2014)
[DOI: 10.1063/1.4863694] [PDF]
- Structural Relaxation of Vapor-Deposited Water, Methanol, Ethanol, and 1-Propanol Films Studied Using Low-Energy Ion Scattering
Ryutaro Souda
J. Phys. Chem. B 114, 11127 (2010)
[DOI: 10.1021/jp104523h] [PDF]
- Structural Relaxation of Low-Density Amorphous Ice upon Thermal Annealing
Jacob J. Shephard, John S. O. Evans, and Christoph G. Salzmann
J. Phys. Chem. Lett. 4, 3672-3676 (2014)
[DOI: 10.1021/jz4020103] [PDF]
- Trapped electrons in amorphous solids: a method for estimating the concentration of molecular vacancies
C. E. Forbes and M. C. R. Symons
J. Noncryst. Solids 23, 363 (1977)
[DOI: 10.1016/0022-3093(77)90120-X] [PDF]
- Pyroelectricity of Water Ice
Hanfu Wang, Richard C. Bell, Martin J. Iedema, Gregory K. Schenter, Kai Wu, and James P. Cowin
J. Phys. Chem. B 112, 6379 (2008)
[DOI: 10.1021/jp073870c] [PDF]
- Angular Distribution Analysis of Permanent Dipole Moments in Amorphous Organic Semiconductor Film with Large Spontaneous Orientation Polarization
Yuro Yagi, Yutaka Noguchi, and Daisuke Yokoyama
J. Phys. Chem. C 128, 6072 (2024)
[DOI: PDF]
- Calibration of Ionization Gauge for Different Gases
S. Dushman and A. H. YoungPhys. Rev. 68, 278 (1945)
[DOI: 10.1103/PhysRev.68.278.2][PDF]
- In-Situ NMR Measurements of Vapor Deposited Ice
Elina Baranovsky, Sarah Delage, Oscar Sucre, Oren Ofer, Patrick Ayotte, and Gil Alexandrowicz
J. Phys. Chem. C 120, 25445-25450 (2016)
[DOI: 10.1021/acs.jpcc.6b08746] [PDF]
- Deposition of Water Vapor on Au(001) Substrates: Effect of Temperature and Deposition Frequency
Yifan Li and Haishan Cao
J. Phys. Chem. Lett. 16, 2245-252 (2025)
[DOI: 10.1021/acs.jpclett.4c02705] [PDF]