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ABSTRACT

The probability density that an electron have certain momenta is given by the
square of the absolute magnitude of a momentum eigenf Unction T„I (P, 0, 4), in
which P, 0&, and C are spatial polar coordinates of the total momentum vector re-
ferred to the same axes as the coordinates r, 0, and @ of the electron. The following
general expression for these functions for a hydrogen-like atom is obtained:

'F.I (P,O, C) = — e™~1 PI"(cos 0)

m.2 +'l! n{N—l —1) l 'f g' I+I g —1

(vh)" (~+&). (C'+1)"' t-'+1
in which f=(27I/ph)P, with y=(4wgpe'Z/nk') =(Z/nai)). The probability " I(P)dP
that the electron have a total momentum lying within the limits P and P+dP is also
evaluated, and it is shown that the root mean square of the total momentum is equal
to the momentum of the electron in a circular Bohr orbit with the same total quantum
number.

'HE eigenfunctions 4'„i (r, 0, @) which are obtained by solving the
Schrodinger wave equation for a hydrogen atom are functions of the

spatial polar coordinates r, 0, and p of the electron relative to the nucleus.
The interpretation which has been given them is that the square of the
absolute magnitude of an eigenfunction represents the probability per
unit volume that on experimental investigation a hydrogen atom in the
state characterized by this eigenfunction will be found to have the con-
figuration described by r, 8, and P. Thus ~%„i (r, 8, @) ~' can be called the
distribution function for the electron; the probability that the electron will
be found in the elementary volume d Vin the region given by certain values
of the coordinates relative to the nucleus is ~%„i„(r,e, P) ~' d V.

In Dirac's transformation theory the, eigenfunction 4„& (r, 0, Q) is the
transformation function from the cartesian coordinates of the electron to
the quantum numbers, and may be represented by the symbol (x, y, s/
n, I, m). The transformation function from the momenta p„p„, p. to the
quantum numbers n, I, m, which may similarly be given the symbol (p. ,

p„, p, /n, I, m), can also be used to give a distribution function, in this case
in momentum space. If this transformation function is known for a given
set of values of n, I, and ns, then the probability that the electron have a total
momentum lying in a given range can be easily calculated. The usefulness
of this transformation function is indicated by one recent application. '

* National Research Fellow in Physics.
' J. W. M. DuMond, Phys. Rev. 33, 643 (1929).
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In this paper we are communicating a general expression for the trans-
formation function from momenta to quantum numbers for a hydrogen-
like atom. Weyl' has discussed another method of obtaining the momentum
eigenfunctions as solutions of an integral equation, without, however,
carrying out its application to the case of a hydrogen-like atom. '

2. The transformation function (p„p„p,/r(. , l, I) can be obtained from
that (x, y, s/n, l, m) by the equation'

(p. p) p/N, l, m)

x, y, s e, l, ns dxdyds. i

Let us substitute for x, y, s the spherical polar coordinates given bythe
equations

x=r sin 0 cos Q

y= r sin 0 sin P

s=r cos 0

(2)

and write for p, p„, p,

P, =I' sinO~ cos C

P„=I'sino sin C

Pg= I cos Q~.

I' then is equal in magnitude to the total momentum vector, and the angles
0 and C give the orientation of the momentum vector relative to the car-
tesian axes of coordinates. The function (p„p„, p, /n, l, m) then becomes a
function of I', 0, and C', which we may call the momentum eigenfunction
and give the symbol Y„(„(P,0, C). Eq. (1) is transformed into

T„( (P,0, 4)
(4)

a-, I f f,- ,.t; ,, „t.;...;.....(.—,&.... ...., ,.e r„g .)„„,g,„,g, (nlmy
0 0 0

with

in which y = 47r'pe'Z/nk'= Z/na, .
~ H. Weyl, Zeits. f. Physik. 46, 1 (1928).
' On page 43 of his paper Weyl states that the momentum eigeiifunctions are given in

his dissertation, Math. Ann. , 66, 307—309, 317—324 (1908). We have, on attempting to verify
this, found nothing in his dissertation that we could interpret as constituting a solution of
this problem.

4 P. Jordan, Zeits. f. Physik 40, 809 (1927).
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The symbols are the customary ones. I'i (cos b)) is Ferrers' associated
2l+1

Legendre function of degree l and order»b; and L, (2yr) is an associated
Laguerre polynomial, defined by the identity5

co I (p) e to—I (2—o)

Z —~e-=(-)& (6)
e=o (~+f!) (~-I) +'

3. Let
2n'

I& —e—+' &+s"s«—
&&deb, with b= —(22r/h)rI' sin!t sino. ,

then

I2= e""""'OI~P cos 0 sin Odo, with c= —2x h rP;
0

1 'o (2)+1)(2—)! '"(22)"' 2( —1—1)!)"'
Yotm(I Os C') =

(22r)'" 2(i+222)! (n+l)! eb(m+l)!

2 l+1Iqe)'ri+'L ( (2yr) dr
0

The values of the first and second integrals are known. The trans-
formation

(10)

converts I, into Sommerfeld's integral, which gives a Bessel function of
order +no:

2n'

I)—ekgm+ e+i +imbcoos d o2(22)rig mJ m(b)ef™C'

The relation

I (b) =i'"I (b)

permits this to be transformed into

I,=22rimJ (b)e™ (4)

We shall need the relation between the associated Legendre functions
and the Gegenbauer C& functions, ' which may be defined by the generating
functions

5 E. Schrodinger, Ann. d. Physik 80, 484 (1926).
6 A. Sommerfeld, Math. Ann. 47, 335 (1896);see also Jahnke and Emde, "Funktionentafeln, "

p. 169.
7 L. Gegenbauer, Wiener Sitzungsber. 70, 6 (1874).
8 An explicit expression for the C's is given in Whittaker and %'atson, "Modern Analysis, "

p. 329.
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g„—= (1—2ttt+tt') "—= QC~(t)N".
k=0

(12)

When v =-,' these functions reduce to the Legendre polynomials. On putting
v = —, and differentiating rn times with respect to t we obtain the relation

P (t)=1 3 3 (2m —1)(1—t ) t C + (t). (13)

In 1877 Gegenbauer' evaluated the following definite integral

f eizcosecostJ &t&(s sin g sin P)Cv(cos g) j svn+1l2 gdg
0

~ ~

~
i" sin" 't'PC„"(cos P)I„+„(s). (14)

If we put v =I+—„z=c, x=0~, and r =1—m, this becomes, with the help
of Eq. (13),

J
sccos8coH~Jm c sm 0 s]n O p QQQ 0 sgn gg

0
l

~

~

1/2 i™P(cos 0)J(~,ts(c) . (15)
c

On substitution for I, of its value given in Eq. (11) it is seen that I,
is, except for a constant factor, equal to this integral, so that we may write

1/2

Is ——2rrj'e+' ~'P (coso~) — Ji+us(c)
c

1/2 27rr p= —2~( —f)'e+'"~P (cos Q') — r '~ J~ ~ts
p h

(16)

Referring to Eqs. (9) and (16) we see that Y„~ (P, 0, C) contains the
integral

e~'r'+ t'J~+, ~s
—L„,(2yr)dr,

which on substitution of

leads to

$=2yr and i =2rrP/yh

(19)

L. Gegenbauer, Wiener Sitzungsber. 75, 221 (1877). The integral is also given in Wat-
son, "Theory of Bessel Functions, " p. 379.
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4. Let

Iu/(f) —= e &/2$—'+2/2J(+)/2(2if')L „+(($)df
0

(20)

In order to evaluate this integral we consider a function U defined by the
following identity:

I )(f)U=—Ul(f, u) =— Q —u" ' '
„=(y) (22+1)!

(21)

It turns out that we can evaluate this function by using the generating
function for the associated Laguerre polynomials (Eq. (6) ), and thus
obtain I„l(|')as coefFicients of the expansion of U((f, u) as a power series in u.

00 L"+/'(f.)U= (: &/2$'+2/2J (-'f$) Q u" ' 'd& by2Q
0 =1+1 (22+i) !

00 ( )2l+)&—$u/ (1—u)

e ("$'+"'I(+,/2( 2f)) —d$, by 6,
(1 u) 2l+2

(1 u)
—2l 2—s—$(1+u)/2(1—u)I (1f))/(+2/2d)

0

(22)

Now the last integral is a special case of a more general integral which
has been evaluated by Hankel" and Gegenbauer, "who obtained the result

f (s/2(2)" I'(/2+ v) /2+ v /((+ v+ 1 s'
e- iJ„(st)P-'d$= — I'—) )V+1

0 (luI'(v+ 1) 2 2 (22

Putting s= —,g, v =l+ —', , /2 =i+5/2, and (2 = (1+u)/2(1 —u), this gives

4f'+'"(2l+2)! !1 —u) 3 3 g'(1 —u) '
U=- F t+—) 1+2 l+—

1'(1+3/2) (1+u)"+' 2 2 (1+u)'

The hypergeometric series Ii is a degenerate one, equal to

l'(1 — i' j-'-'
1+

(1+u)'

so that U can be put in the form

1—Q
U=A—

(1—2xu+u2) '~2

in which

4(21+2) !f (+'/2 f2
and x=—

I' (l+ 3/2) (f'+ 1) '+' f2+ $

(23)

(24)

0 H. Hankel, Math. Ann. 8, 467 (1875)."L. Gegenbauer, Wiener Sitzungsber. 72, 343 (1876):see also Watson, "Theory of Bessel
Functions, " p. 384.
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5. We now return to Eq. (12). Operating on both sides with
u "+'(8/Bu)u" we obtain

v(1 —u')
=— Q(v+ k)CI(t)u".

(1 2ut+—u') "+'

Putting v=l+ I and t =x, we may rewrite Eq. (24) as

00 QO

Q(t+k+1)C~+ (x)u"= QnC, I ~(x)u" '—'.
k=0 ~+1

Comparing Eqs. (26) and (21), we see that

Au(u+I)! i+i f' —11.~(l) = C —l—1
3+1 g'+ 1

(26)

(27)

6. Thus the momentum eigenfunctions are found to be given by the
expression

T„,„(vo,e]=( —,-}((—' —' "
) v"i- 8]}

(
( i)'x—2«+4t! u(u t 1—)!—'t2 f',+, f2 —1

(~h)3/2 (u+I) ! (f2+ I) l+2 f2+ I

in which $=2xP/ytt=rtP/Zp, =P/p . p„which is equal to 2xve'/tt, is the
momentum of the electron in a circular Bohr orbit with n=1 and Z=1,
corresponding to a hydrogen atom in the normal state, and p =Zp, /n is

the momentum of the electron in a circular Bohr orbit characterized by
the total quantum number n and the nuclear charge Ze. The factor —( t')'—
in Y may be omitted, since its absolute value is unity.

Some of the Gegenbauer C functions which enter in this expression
are given below. Others can be obtained from these by the application of
the recursion formula

l=o

v v+ 1
C„(x)=—( xC„,(x) —C„,(x) I .

r
l=3

n=i
n=2
n=3
n=4
n=5
n=6

CpI(x) =1
CII(x) =2x
CgI(x) =4x —1
CgI(x)= 8x -4x
C4I(x) =16x4—12x +1
CgI(x) =32x —32x3+6x

Cp2(x) =1
CIg(x) =4x
C22(x) = 12x —2
C32(x) =32x3—12x
C42(x) =80x4 —48x +3

Cp3(x) = 1
CI3(x) =6x
Cgg(x) =24xg —3
C33(x) =80x3 —24x

C,4(x) =1
CI4(x) =8x
C24(x) =40x —4

Cp~(x) 1
CIp(x) = 10x

Gegenbauer" has shown that his C„"(x) functions with a given upper
index when. multiplied by the factor (1—x') "t'—'t' form an orthogonal set,
for they satisfy the equations

f
+' „2'"-'Z'(r+ 2v) F(v+ I/2) ~

(1—x')"—"'C„"(x)C„(x)dx= (29)
(r+v) I'(r+1) I'(2v)

I' L. Gegenbauer, Wiener Sitzungsber. 7'0, 6 (1874), Eq. (16).
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The functions of P which occur in the momentum eigenfunctions with
a given value of l also form an orthogonal set; but they are not the Gegen-
bauer orthogonal functions. Since the volume element involves I"dI', the
orthogonal functions are in this case

x2 "+'l! n (e—1—1'!!
C„)l P,

(7h)'" (&+f) (f'+1)'+' f'+1
in which f =ZP/npa is different for diferent functions of the set, since it
involves the quantum number n. That these functions are normalized can
be shown with the aid of Gegenbauer's integral (29). The norma1ization
integral

x2"+'1! rs(rl, t 1)!—'(—'- ' " 1',+, f' —1
P dP

(vh)"' (I+i)! 0 (f'+1)'+' f'+1 (30)

becomes on substituting x for Q' —1)/(P+1), and omitting the factor before
the integral sign,

+1 +'

J (1—x)(1—x')'+"'[C.'-( 1(x)]'dx= (1—*')'+"'[C '-I- (*)]'dx
—1 —1

On substituting for x C, , (x) its value given by the recursion formula

i
x C"(x) = —[(r +1)C„"+q( )x+(r+2 —p 1)C~ i(x)]

2(r+()

the second integral is converted into two, each of which vanishes by Eq.
(29). The value of the erst integral as given by Eq. (29) is just that required
to make (30) equal to unity.

7. The probability that the electron have a momentum lying in the
range between P and P+dP can be written as „~(P)dP, in which „((P),the
momentum distribution function, is given by

1r 2'
-".((P) =

~
T„(„(P,O~, C)

~

'P' sin O~dO~d4.
0 0

On carrying out the integration this is found to become

(31)

(32)

8. It is of interest to evaluate the diagonal elements of the P' matrix,
which are equal to the average values of the square of the momentum in
the various quantum states'.

P„'= P'"„((P)dP.
0

(33)
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On substituting for P' its value p„'(1+x))(1—x), it is found that this inte-
gral, aside from the constant factor p„', differs from the normalization
integral only in having the factor (1+x) in place of (1—x); and since the
integral involving x vanishes, and the normalization integral is equal to
unity, we obtain

2mpe Z
(3cP

Now p'„ is just the average value of the square of the momentum of the
electron in a Bohr orbit with total quantum number n; so that the root mean
square momentum for a hydrogen-like atom is the same in the quantum
mechanics as in the old quantum theory, in each case depending only on
the principal quantum number n.


