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We investigate exactly a system of either fermions or bosons interacting in one dimension by

a two-body potential V(r) =g/r with periodic boundary conditions. In addition to rederiving
known result' for correlation functions and thermodynamics in the thermodynamic limit, we

present expressions for the one-particle density matrix at zero temperature and particular
(nontrivial) values of the coupling constant g, as a determinant of order N && N. These concise
expressions allow a discussion of the momentum distribution in the thermodynamic limit. In

particular, for a case of repulsive bosons, the determinant is evaluated explicitly, exhibiting a
weak (logarithmic) singularity at zero momentum, and vanishing outside of a "Fermi" surface.

In a previous paper, ' to be called I, we investi-
gated the properties of a one-dimensional quantum
ftj-body system interacting by the two-body potential
V(r) = g/r In .order to take the thermodynamic
limit, it was necessary to confine the system by a
weak harmonic well. The ground-state wave func-
tion was then found to be intimately related to the
probability distribution function for eigenvalues of
matrices from a Gaussian ensemble.

The use of a weak harmonic well to confine the
system, although it served the purpose, destroyed
the translational invariance of the problem. In this
paper we consider the same system with periodic
boundary conditions. The resulting solution al-
lows an even more complete description of the
properties of this quantum fluid.

In order that the potential be periodic, and thus
our Hamiltonian be periodic, we shall add the in-
teraction of pairs of particles once, twice, etc.
around the ring of circumference L. That is, we
take our two-body potential to be

subject to
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2Peculiarities of g/r potentials have been discussed
at length in I, and will not be treated further here.

As before, we seek a wave function of product
form, or a Bijl-Dingle-Jastrow wave function:
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V(r)=g Q (1+nL) '=, sin — . (1)
n--'o

For large systems, of course, the additional terms
are unimportant. The mathematics, however, is
considerably simplified by starting with periodic
equations.

Thus, we wish to find the ground state of the
Hamiltonian

(4)

This form is familiar as a trial wave function in
the theory of quantum fluids.

Let us denote the logarithmic derivative of |t) by

0 =0'/0, 0'=1!"/1!-(1!'/1!) .
Then the kinetic-energy operator acting on this
wave function is

2
—2!1 Q [y'(x, -x,)+!1y'(x, -x,)]

Bx

+2x2 Q [P(x, —x,) P(x, -x~)
tri pi, es

~ eycl'c per tst'o s o»133])6 . (6)

The last summation in Eq. (6) is over the A(N —1)
x (A 2)/3! distinct triples ijk.

Apart from the particular Hamiltonian of Eq. (2),
we can, for general information, ask when is the
expression in braces on the right-hand side of Eq.
(6) equal to a sum of two-body operators, and
hence 4 the wave function of some one-dimensional
many-body problem. (Although this problem may
in general not be very physical, at least the poten-
tial is of the two-body type. ) We immediately see
that it is sufficient that a solution of the three-body
problem for some nonzero X be given by 4 of prod-
uct form.

Let us write a typical triple term as

T-=0(=) e(y)+ e(y) 4(x)+ 4(s) 4(x)

= 4( ) e(y) —0( +3) le( )+ e(3)i,
( I)

Therefore, we ask that there exist some even func-
tion f (x) such that

T(x, 3t, x)=f(x)+f(y)+f(z), x+y+x=o . (8)

One may verify that Eq. (8) is satisfied for the
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known instances w'here a Hamiltonian has a 4' of
product form as a wave function3:

(i) V(r) = —2c5(r),

(ii) V(r) = uP r'+ g/r ' .

c)0;

For our problem, with the particular Hamilto-
nian of Eq. (2), we try the product wave function

m(x, -x,)
"

4=+ sm Xg) Xg

and thus

p(r) = (m/L) cot(mr/L) . (10)
Recognizing that A. =1 corresponds to the ground-

state wave function for free fermions on a ring of
circumference L, then by the considerations above,
we know 4' to be the solution of some problem.

First, comparing the addition formula for the
cotangent function with Eq. (8), we find T=m /L
The complete expression for Eq. (6) then becomes

8 g A m N(N -1) 2A(A —1) m

Bx 3L
~2

x ~ sin ( ax- xi)
g&j

constant of I. In terms of the x variables, the
appropriate normalization constant is (2m/L)" C.
(b) The particle density d is constant and equal to
N/L. (c) The pair correlations are the same as
given in I. However, previously the case P=4
rested on a conjecture, whereas we now have a
proof. In addition, Dyson in a recent paper' has
given simple and elegant expressions for multiple
particle correlation functions when P= 1, 2, 4. (d)
And finally, the thermodynamics for this system
has been given by the author in a previous paper. '

Although correlation functions and thermody-
namics for this problem do not depend on the sta-.
tistics of the particles, one should not conclude
that all properties are independent of statistics.
Now we derive concise expressions for the one-
particle density matrix as a determinant of order
NxN, for the cases P = 1, 2, 4 and either fermions
or bosons. Of course, we shall be especially in-
terested in the macroscopic occupation of the zero-
momentum state for bosons or a sharp Fermi sur-
face for fermions.

The one-particle density matrix is defined as

(L
p(X X ) N J dX1 J dXN I + (XI& '''srXN li X )

0

On comparison with the original Schrodinger equa-
tion, we find 4 will be a solution if

x 4'(x„.. . , x„„x). (17)

2X(A —1)=g or X= 2 [I+(I+2g)'ia] .
The energy eigenvalue is

E= ~ X m N(N —1)/L or E/L- 3 X2m

(12)

This agrees with Eq. (24) of I. Other properties,
of course, agree as well, for we are simply verify-
ing that bulk properties are independent of bound-
ary conditions; this is an assumption of the usual
statistical mechanics.

Let us rewrite 4 in terms of the variables 6)&

= 2mx, /L as

(14)

This is normalized so that p(0)= d. The Fourier
transform n(k) is the distribution of particles with
momentum k. It is normalized so that fn(k) dk= d.

We shall write p(x) = L 'A(2mx/L) Thus.
Z(1+ A. ) I'[I+ X(N —1)]

I"(1+XÃ)

t f'
x de, .JI d8», 4'» 1 g f(6~, o) i (18)

af I' k=1

where

f (B, o. ) = 2"
l
cos8 —cos(-,'o) l"

~

~

1, bosons
a a&(zo -8 ), fermions .

4'= C g le'" - e"i I' P=-2~ . (16)

Then, as before in I, we recognize the expression
for 4 to be identical with a probability distribu-
tion function from the theory of random matrices.
However, this time the appropriate matrix ensem-
bles are Dyson's circular ensembles, instead of
the Gaussian ensembles. Let us simply outline the
relevant results from the literature on random
matrices: (a) The normalization constant C is
proven to be'

e(x) is the sign function. Thus, for instance, if
we have fermions with ~ equal to an odd integer or
bosons with ~ equal to an even integer, then we

may ignore the absolute sign in the expression for
f (0, u) of Eq. (19) while dropping the final factor.
Further, in these instances, since f is a poly-
nomial in cosmo. of degree A, n(k) will vanish when-
ever Ikl & mh. d, We now consider the following
cases.

a. A. =1. This case corresponds to free fermions
or bosons with an infinite hard core. Free fermi-
ons are well understood, and we find

(16)

in contrast to the conjecture for the normalization

sin(mdx), „) I/2m, I k I «d
, n~k=

mx
'

0, Ikl)nd . (20)
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However the case of bosons, although at first glance
simple, is actually quite complicated. It has been
treated rather thoroughly in the literature. Let
us merely state that there is no Bose-Einstein con-
densation into a single momentum state. The in-
dication is that n(k) diverges as I kl '+ at the or-
igin; it may diverge less strongly.

b. X= —,'. Since the expression Eq. (18) for R(u)
is the expectation value with respect to a 4 for
A' —1 particles, of a product of identical functions
of single 8 variables, we may use the Mehta-Gaudin
method' to express R(u) as the determinant of a
matrix. We find, assuming N is odd,

(24)

Si(2wdx)
2wx

Si(x)=— y
dy .

0

f (g, u) is given by Eg. (19) with A. = 2. F is an

(N 1)x (N 1) matrix.
In a later paper, these matrix expressions for

the one-pa, rticle density matrix will be investigated
in detail. We simply note here, that in the case
X= 2 bosons, the matrix F~ has nonzero elements
only for IP —ql&2. This simple form allows the
explicit determination

R( ) N dt[E)I'( ,'N+ 1—)
(21)

(4w) 'I (2wd/lkl),
0,

Ikl - 2n.d
1k i

~ 2wd . (25)

f(8, u) is given by Eq. (19) with X=-,. We see that
F is an ,'(N —1—)x-,'(N —1) matrix.

c. X=2. Likewise, using the theorem relating
the symplectic and orthogonal ensembles, we may
again use the Mehta-Gaudin method to express
R(u) as the determinant of a matrix:

( )
I'(3) I'(2N -1)

I"(2N+ 1)

where

F, , = (1/2w) f, dP f(g, q) [sinqg sinpP

(23)

+ (p/q) cosqg cosPQ],

where

Z, , =(p/4 )wf f d8 deaf(8, u)f(4, u)e(8 —0)

x (cospQ sinq8 —cosp8 sinqp),

p, q = —,', -'„.. . , —,'N —1 . (22)

It is really quite remarkable in what a diversity
of situations the g/r potential or the 4' distribu-
tion function appears. It brings to mind the similar
versatility of Bethe's hypothesis as a nontrivial
many-body wave function.

In this paper, we have related a one-dimensional
quantum many-body problem with long-range forces
to the theory of random matrices. 4' in turn is
related to Dyson's one-dimensional Coulomb gas
and a model for interacting Brownian particles.
The g/w potential arises as the dividing case be-
tween one-dimensional systems with and without
phase transitions. Both the g/ra potential and a
distribution similar to 4' occur in Anderson's
treatment of the Kondo problem. Also, 4 is fa-
miliar in the theory of quantum fluids as that part
of the ground-state wave function of a one-dimen-
sional system due to zero-point motion. Needless
to say, a deeper understanding of these interrela-
tionships would be very welcome.
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