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Abstract. The hydrogen atom in a semi-infinite space limited by a paraboloidal boundary,
with the nucleus at the focus, is studied as a model of an atom on the surface of a solid.
The energy eigenvalues, hyperfine structure, electric dipole moment and pressure of the
system are evaluated as the paraboloidal boundary approaches the nucleus up to the
position at which the atom becomes ionized.

1. Introduction

In this paper we formulate and solve exactly the problem of the hydrogen atom in a
semi-infinite space limited by a paraboloidal surface. This system is of interest as a
model of an atom on the surface of a solid. We have become involved with such models
in connection with the study of electron emission by compressed rocks (Shevtsov et
al 1975, Brady and Rowell 1986, Guo et al 1988, Ley-Koo et al 1989). More generally,
the development of these models is important for the study of surface physical
phenomena (Levine 1965, Jiang and Shan 1985, Shan et al 1985, 1987, Shan 1987,
1990, Liu and Lin 1983, Satpathy 1983).

There is evidence for the emission of electrons in rocks under compression up to
the point of fracture. Shevtsov et al (1975) detected and collected peositive electric
charges from the surface of feldspar samples under pressures from 0 to 80 MPa. Brady
and Rowell (1986) observed the characteristic light of various atmospheres surrounding
fracturing granite (at 300 MPa) and basalt samples, and concluded that the exoelectron
excitation of the ambient atmosphere is responsible for such light emissions. Guo et
al (1988) reported the direct detection of electrons with a Geiger-Miiller counter in
fracturing granite samples (at 170 MPa). Ley-Koo et al (1989) have proposed a possible
for the production of electrons in rocks under compression. Models of atoms in boxes
with penetrable walls {Ley-Koo and Rubinstein 1979) are capable of accounting for
the production of electrons before and at the moment of fracture, with energies up to
the order or one atomic unit, at pressures consistent with those of the experiments.
The high-energy electrons reported by Guo et al (1988) cannot be directly explained
through the mechanism of compressed atoms, since the pressures would have to be
unrealistically high for the electrons to attain such energies. As pointed out by Ley-Koo
et al (1989), additional experimental and theoretical work on the problem is needed.
The energy distributions of the electrons before and at the moment of fracture need
to be measured with the appropriate instrumentation. Models of atoms on the surface
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1482 E Ley-Koo and R M G Garcia-Casteldn

of the compressed solid sample must be developed and may serve as points of reference
in the analysis of the problem under consideration.

The present investigation is the starting point of the line of inquiry stated at the
end of the previous paragraph. An atom inside a solid has been modelled as an atom
inside finite volumes {(Michels et al 1937, Ley-Koo and Rubinstein 1979, 1980, Ley-Koo
and Cruz 1981); the walls of the chosen volume simulate the confining effect on the
atom due to its neighbouring atoms in the solid. An atom on the surface of a solid,
on the other hand, can be modelled as an atom in a semi-infinite space, since itg
neighbouring atoms lay only inside the solid. Moedels of atoms in semi-infinite spaces
have been investigated in solid state physics to study donor atoms on semiconductor
surfaces (Levine 1965, Jiang and Shan 1985, Shan et af 1985, 1987, Shan 1990) and
Wannier excitons near a semiconductor surface {Liu and Lin 1983, Satpathy 1983). A
qualitative difference between these models and the ones we propose to study is that
the semi-infinite space of interest is the inside of the solid in the former and the outside
of the solid in the latter. Also in those models, the semi-infinite space is bounded by
a plane, while in the problem of the rocks a curved surface is more appropriate.

Here we investigate the hydrogen atom in a semi-infinite space limited by a
paraboloidal surface, with the nucleus at the focus. This model is related to the model
of hydrogen atoms inside a box with paraboloidal surfaces (Ley-Koo and Rubinstein
1980) as the limit of the latter in which one of the surfaces is moved out to infinity.
Qualitatively both problems are different, but their quantitative solutions are based on
the same equations and methods. Consequently, in section 2 we borrow the equations
of Ley-Koo and Rubinstein (1980) and solve them for the boundary conditions of the
atom in the semi-infinite space to obtain the energy eigenvalues and eigenfunctions of
the lowest states of the system. In section 3, we obtain the expressions to evaluate the
hyperfine splitting, the electric dipole moment and the pressure of the atom in the
ground state for different positions of the paraboloidal boundary. Numerical results
for these properties are presented in section 4 together with a discussion of their
changes as the paraboloidal surface approaches the nucleus up to the point at which
the electron abandons the atom. In the appendix we give the detail to evaluate the
integrals in the anisotropic hyperfine splitting.

2. Energy eigenvalues and eigenfunctions

In the notation of Ley-Koo and Rubinstein (1980} we use parabolic coordinates
(=r—2 g=r+z ¢) to define the position of the electron relative to the nucleus in
the hydrogen atom. The eigenvalue problem for the hydrogen atom in a semi-infinite
space limited by the paraboloidal surface, £ = &, is defined by the Schrédinger equation

fﬁ[ 4 ( P a) 1 32] 2Ze2}
T t— |- = E S 1
and the boundary conditions
'll(f: é'()s ™ ‘P)=0 (20)
Y(&n—>2,¢)=0 (2b)

on the wavefunction.
Equation (1) is separable and admits the factorized solution (Buckingham 1961)

(g m 9)=CE(E)H(n)P(p). (3)
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The factor depending on the azimuthal angle corresponds to eigenstates of the axiat
component of the orbital angular momentum

ine

e
$lp)= 4
(¢} Nor (4a)
m=0,+1,+2, ... (4b)
i.e. o, m, 8, ... states. The other factors satisfy the ordinary differential equations
#'fad d m’\ 4K
[——(——g———z—)——‘ E=EE (5a)
2p\edédé ¢ £
h? (4 d d ml) 4K2]
-——|-—n5~———|-—|H=EH (5b)
[ 2u\ndn 'dn %’/ 7q
where the separation constants K, and K, are constrained by the relation
Ze*
K,+K,= B (6)

Both equations (5a) and (5b)} are mathematically of the same type and can be dealt
with at the same time by introducing the independent variable ¢, and the function Q;,
with i=1,2 corresponding to the situations of & and =, respectively. The regular
singular peint g; = 0 is removed by taking

Qla)=4""*f(q) (7
after which equations (5) transform into
: +1 d K, 2uE
(_d_2+|m| _+2/—: .+2,u2
dq; g dg Rg h

)f(q.) =0. (8)

In terms of the Bohr radius, a,= #°/ne’, and the energy parameter #, such that

Z2e?
E=-
2a0y2 (9)
it is convenient to introduce the dimensionless variables
Zg;
=gk U 10
bi ZGOV ( )
and to reparametrize the separation constants:
2K, Z v+i|mi+1
P-z _&VY 2| m] )' (1)
fl ay v
Then equations (6) and (8) become
v+t mltl=p (12)
and
& Iml+1r d 2y +im|+i
(_._2+|___\..._ _+—£_"L'|___1)f(Pi)=0- (13)
dpi pi dp Ps
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The solutions of equation {13) are well known. For i =1, we use the power series
expansion developed by Ley-Koo and Rubinstein (1980)

fip) = T ™} (14)
s=0
with the recurrence relation following from equation (13),
2vy +|m|+ 1)l - e
S\T-i)-lz_( : l | )CN e N=1)2a3""
(N+1)(N+|m|+1)
15
ﬁm)=_Mﬂ () q (15)
[m|+1
For i==2, we use the solution in terms of the confluent hypergeometric function
Sflp2) =e™%2 | Fi(—w,, |m|+1, 2p,). (16)

The energy eigenvalues (equations (9) and (12)) and the eigenfunctions (equations
(3), (4), (7), (14) and (16)} are determined by the boundary conditions (equations
(2a) and (28)), which take the explicit forms

o0 Z *
¥ c§”’(—§9~) - (a7
s=0 ?.aov
from (14), and
v=0,1,2,3,... (18)

from (16), respectively. For chosen values of the position of the paraboloidal boundary,
&, and of the quantum numbers m and »,, equation (17) can be satisfied only for
discrete values of », , since the coefficients ¢{™ (equation (15)) and the energy parameter
v {equation (12)) depend explicitly on v»,. This results in discrete values for the energy
(equation (9)).

In order to carry out the numerical calculations for a given choice of m and », we
start by fixing the value of »,. Then the values of » (equation (12)) and of the energy
equation (9) are also fixed. Thus the coefficients of equation (15) can be generated,
and the zeros of the sum of equation (14) can be obtained to the desired accuracy
with ihe necessary finite number of terms. The corresponding zeros p,, deterinine the
positions of the paraboloidal boundaries
_ 2aqvp 0

Z

of the semi-infinite spaces for which the eigenvalue problem of the hydrogen atom
has been solved.

It is of special interest to determine the position of the paraboloidal surface limiting
the semi-infinite space for which the hydrogen atom becomes ionized, We go back to
equation (5a) taking the vanishing value of the energy, E =0, corresponding to the
limit » >, », >, for which, according to equations (11) and (6), K, = Ze*/2 and
K, =10. With the additional change of variable

/Z

x=2 Z {20)
2

equation (5a) becomes the ordinary Bessel equation (Abramowitz and Stegun 1965)

d? d —
(xza'F+xE+(x2'm2))==0- (21)

(19)

0
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Then the boundary condition equation {2a) gives the position of the paraboloidal
boundary

aojil,n

&= 47 (22)
in terms of the zeros of the regular Bessel function of order m. The successive zeros,
n=1,2,3,..., correspond to the successive orders of excitation of the degree of
freedom associated with the £-coordinate. Notice that the limit situation analysed
above is independent of the order of excitation of the degree of freedom associated
with the n-coordinate (equation (18)). This means that all the eigenstates ¥,,,» with
fixed values of n and m, but different values of », tend to become ionized for the same
position (equation (22)} of the paraboloidal boundary of the semi-infinite space.

3. Ground state properties

In this section we evaluate the hyperfine splitting, the electric dipole moment and the
pressure of the confined atomic hydrogen in its ground state,

C [=%]
Vrool& M @) = 5= 1 S (23)

=0

as a function of the position &, of the confining wall,
The isotropic hyperfine splitting is given by the Fermi contact term (Atherton 1973)

8
Ao = 7’” eBENBN ¢ (0) = 42, BgnBNC? (24)

and requires the evaluation of the normalization constant C in equation (23). This is
accomplished by imposing the normalization condition on the wavefunction of equation
(23),

1=J @ (& m @) dV

I ( Z ) P—_O(I‘——O 3 )(2 p 2 I P l ] ) (
(0}

For a chosen value of »,, the energy parameter ¢ (equation {12)), the coefficients c'
{equation (15)) and the zeros p;o of equation (14} are numerically determined as
indicated in section 2. Thus the numerical evaluation of A, (equation (24)) can also
be accomplished by carrying out the summations in equation (25).

The axial anisotropic component of the hyperfine splitting is given by the expectation
value of the corresponding component of the dipole-dipole operator (Atherton 1973),

3z22-r°
o)

r5
ok P
=4geBgN.BNC2 E (2 C‘SJG—)!CEO))
=0

p=0

Py 0 2 _ 2
: —25, P14D1p2 T P2
be ple 2"’2——(:1,0 dp,. 26a
L .L : (P1+P2)4 e ( )

A% = g. 82BN <¢’
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The last double integral has an integrand with the integrable singularity at p, =0,
p2=10, which according to the method of Stephen and Auffray (1959) gives the
contribution

k k 2 2
The remaining integration
Tl =lim | | pt 2 PP P g 276
p\P10 ,HoJk JO P e (pr+ 8,) £10p; ( )

is evaluated in the appendix and reduced to a form (equation (A5)) which can be
computed numerically. The contributions of equations {27a} and (275} to the double
integral in equation (26a) transform the latter into

oo P
A=A+ 4g88080C T (£ ) Tou (26b)

p=0 \r=
where it is recognized that the contribution from the integrable singularity is half the
value of equation (24) and that all the factors and coeflicients in the second term are
also known.

The expectation value of the electric dipole moment of the confined hydrogen
atom, —e(r), has only a non-vanishing axial component due to the invariance of the
system under rotations around the axis of the confining paraboloidal surface:

~ A A C2a\ D (r (0))( pho phe” )
d=-e(z)k=—keg ( z ) Z, (Eo - Napr) 20p+3)/ (28)

Concerning the pressure in confined atoms, it must be recognized that since the
original work of Michels er al (1937) such a pressure has been evaluated only for the
case of s states in spherical boxes, for which the pressure is uniform due to the symmetry
of both the state and the box. If one considers p states in spherical boxes, it is realized
that the pressure is not uniform, vanishing in the nodal equator and increasing towards
the poles, as determined by the angular variations of the electron probability density.
Correspondingly, in the system under consideration in this paper, the pressure is not
uniform in the different points of the paraboloidal surface bounding the semi-infinite
space. In order to evaluate the pressure in each point, we introduce the energy density
(Hirschfelder 1978)

£ n
e(&o, m @) Ay Ap = (J- hehh, dg ¢*H¢r) An Ag (29)

associated with a cylinder-like element around the points with a sectional area
h.h, An Ag from £=0 to £ =¢£,, where the h are the scale factors associated with the
respective coordinates. The relative change in the energy equation (29) as the para-
boloidal boundary is changed infinitesimally, divided by the area of the cross section
of the element gives the pressure

1 1 9

———— == An A
P&, 1, 9) Wi Ande h agog(f"‘""") nAg

4 93
- _'E(g s Th ‘P)' (30)
Et+tmn dk °
By using the explicit form of the ground state wavefunction (equation (23)), and the
fact that it is an eigenfunction of the Hamiltonian operator with the eigenvalues of
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equation (9), then the energy density function of equation (29) becomes

c?
e(éo, "?)— E(‘fo) I (£+7) dE[E(H)) e
CZ ZZe2 2(101'/) s pp+2 pt1
—— 28o¥Y 20,  Jo}fPio P 31
8 2aov2( 4 ;0( 2 oo )(p+2 p2p+1)' 31
By using equations (25) and (31) the pressure of equation (30) takes the form
ZS 2 e—2p2

47Ta0V Pot p2

¥ r p+2 p+i
P [
Z (z Ci’mr (rﬂ))( 19 +P2 10 )
d | p=o\iTo pt2 "“p+l

X +2 1
P10 3 E (i C;o}lcgo))(f)fo + P?J )
p=0 \1=0 pt2 2(p+1}

The fraction inside the brackets as well as its derivative can be calculated numerically
as a function of p,,, for chosen values of p,.

(§Os 7’)

(32)

4. Results and discussion

Some illustrative numerical results for the energy eigenvalues, hyperfine splitting,
electric dipole moment and pressure of the hydrogen atom in semi-infinite spaces are
presented in the following tables and figures, as functions of the position of the
paraboloidal surface boundary.

Table 1 contains the numerical values of the energy (equation (9)), and the energy
parameters (12) and (18), for the lowest states of the hydrogen atom and different

Table 1. Energy and energy parameters for the lowest states of the hydrogen atom in a
semi-infinite space bounded by different paraboloidal surfaces.

{nyym) E (¢*/2a,) v ¥ vy £ (ay)
(000) —1.00000 1 0 1] e}
—0.99980 1.0001 0.000]1 1] 11.5565
—0.84168 1.09 0.09 0 3.8345
-0.27701 1.9 0.9 0 2.0475
~{.17361 2.4 1.4 0 1.8678
—-0.01384 8.5 7.5 0 1.5381
(01o) ~-0.25000 2 0 1 =1}
—-0.24752 2.01 0.01 1 12.5540
—(.18904 23 0.3 1 4.8310
-0.09183 33 1.3 1 2.7182
-0.01208 9.1 7.1 1 1.7335
—0.00346 17 15 1 1.5862
(100} -0.25000 1 0 0 a0
—(1.24876 2.005 1.005 0 24,6928
—0.12755 2.8 1.8 0 10.6677
~0.06250 4 3 0 9.1771
—-(.01876 713 6.3 0 8.2858
—-0.01384 8.5 7.5 0 8.1704
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positions (equations (17) and {19)) of the paraboloidal boundary of the semi-infinite
space. The states are designated with the notation (#,n.m)} in terms of the order of
excitation of the respective degrees of freedom. In the limit in which the boundary is
very far, the energy of the states approaches the value for the free hydrogen atom with
principal quantum number n = n, + n,+|m|+ 1. While table 1 is restricted to the lowest
o states, figure 1(a) contains the corresponding energy curves for these and other ¢
states, and figures 1(b) and 1(c) correspond to = and § states, respectively. If these
curves are followed starting from large values of &, i.e. when the paraboloidal boundary
is very far, the energies are close to the free hydrogen atom energy values and have

25
¢ — Lo
30
20
I
(]
-~
¥ 5r
Ly
16
1p
(g}
0
—
—7:,
‘_S [
o
K
™
0.25
(&)

Figure 1. (a) Energy of lowest o states of the hydrogen atom in & semi-infinite space
bounded by difierent paraboloidal surfaces. (b} Energy of lowest w states of the hydrogen
atom in a semi-infinite space bounded by different paraboleidal surfaces. (¢) Energy of
lowest & states of the hydrogen atom in a semi-infinite space bounded by different
paraboloidal surfaces.
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E (92/200]
T

(c)

Figure 1. (continued)

the degeneracy n, +n,+ 1. As the paraboloidal boundary gets closer, &, taking smaller
values, the degeneracy is removed and the energies increase monotonically due to the
confinement effect. When the paraboloidal boundary takes the positions given by
equation (22), the corresponding states have zero energy, becoming degenerate, and
the atom is at the threshold of ionization.

Table 2 gives the numerical values of the isotropic and anisotropic components of
the hyperfine splitting, the electric dipole moment and the pressure of the hydrogen
atom in the ground state for different positions of the paraboloidal surface boundary.
Figure 2(a) gives the variation of the isotropic hyperfine splitting equations (24} and
{25)) as a function of &. It starts from the value of 50.762 mT for the free hydrogen
atom for large values of £, increases slowly at first and then more rapidly as the
paraboloidal surface is placed closer in; eventually, A, reaches 2 maximum and then

Table 2. Isotropic and anisotropic components of hyperfine splitting, electric dipole
moment and pressure for the hydrogen atom in a semi-infinite space.

Aol 8.8 A';’;/gcﬁ P(p,=0} Plp,=1)
£ (ap) (mT) (mT) d (—eay) (10" Pa) (10" Pa)
10.0100 50.8918 0.0000 0.0041 1.6200 0.2700

6.4312 53.4566 0.0000 0.1026 0.0514 0.0045
31.8345 61.8536 0.0402 0.3976 0.0164 0.0035
1.8678 30,3252 2.7534 2.0051 0.0051 0.0020
1.7871 23.8069 2.4572 2.4199 0.0032 0.0011
1.6631 13.0265 2.1811 3.6430 0.0009 0.0005
1.5548 4,3488 1.1144 6.9636 0.00012 0.00009

1.5381 3.2633 0.8999 8.16685 0.00011 0.00005
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Figure 2. (a) Isotropic hyperfine splitting of the hydrogen atom in a semi-infinite space
bounded by different paraboloidal surfaces. (b) Anisotropic hyperfine splitting of the
hydrogen atom in a semi-infinite space bounded by different paraboloidal surfaces.



Hydrogen atom in semi-infinite space 1491

drops to zero fairly rapidly as the boundary approaches the position at which the atom
becomes ionized. The increase in the values of A, reflects the increase of the probability
of finding the electron at the position of the nucleus due to the confiment effect of the
boundary; however, if the boundary is too close its effect is to push the electron away
from the nucleus. Figure 2(b) shows the anisotropic hyperfine splitting as a function
of the position of the paraboloidal boundary. It attains its vanishing asymptotic value
for £, 4, then increases rapidly, reaching a maximum, and drops to zero also rapidly

ae £ tal allar yva Th ity : o 5 1 H % 1
as & takes smaller values. The positive sign of A5; {equation {26a)) is an indication

of the prolateness of the electron distribution in the confined hydrogen atom. Figure
3 presents the monotonic variation of the electric dipole moment of the hydrogen atom
from its asymptotic vanishing value to its infinite value as £, gets smaller. Such a
variation reflects the increasing value of the expectation value for the position of the
electron (equation (28)) as the boundary gets closer. Figure 4 illustrates the variations

{equation (33), specifically at the vertices, p, =0, and at the points with p,=1. The
presence of the decreasing exponential functions of p, in equation (33) ensures that
the pressure diminishes rapidly at points on the boundary away from the vertex. The
pressure also vanishes asymptotically for distant boundaries, increases, reaches a
maximum and then drops to zero as the boundary gets closer.

]
]
|
I
|
I
8 |
!
[
|
I
I
~ b6 |
iy |
@ I
. !
i
= i
S
|
|
|
b
2k
|
|
|
|
- i i S ——— J
0 2 4 6 8

g, (g,)

Figure 3. Electric dipole moment of the hydrogen atom in a semi-infinite space bounded
by different paraboloidal surfaces.

The study of the hydrogen atom in a semi-infinite space with a paraboloidal
boundary is of both intrinsic and practical interest. Its intrinsic value is related to the
fact that the quantum system under consideration has an exact solution as shown in
this paper. Its utility can be appreciated through a consideration of the atomic properties
that have been calculated. The ionization and pressure of the atomic system as functions

of the position of the paraboloidal boundary provide physical information relevant



1492 E Ley-Koo and R M G Garcia-Casteldn

P 110" Pa)

g, la)

Figure 4. Pressurc of the hydrogen atom in a semi-infinite space at vertices (p,=0) and
at points with p, =1 of different paraboloidal surfaces.

for the understanding of the emission of electrons by compressed rocks; the correspond-
ing analysis is to be carried out separately. Comparison of the hyperfine splitting and
electric dipole moment of the hydrogen atom in semi-infinite space with the correspond-
ing properties of the free atom or the atom trapped inside a solid gives a way to
ascertain and characterize the surface effects. In addition to, but apart from the above,
the present work allowed Ley-Koo (1991) to realize that in the hydrogen atom in a
strong magnetic field the electron becomes confined inside a paraboloid, thereby
breaking parity symmetry.

Appendix

The integrals T,(p,o) appearing in the anisotropic hyperfine splitting (equation (27b}),
can be evaluated by first decomposing the dipole-dipole operator in the integrand into
partial fractions:

® o2 ) e **:dp, e dp,
T, =1 4 P(J- —tZ g J. —FBiepr | —L2). (A1)
p(Pro) J.o Py o (pitp)’ . o (prtps) P 0 (pl+p2)

Then the integrations over p, can be carried out by parts and reduced to
[ ﬂ)i_l 2E(2p)e"' (A2)
1

Jo (P|+P2)2 20 !
oo .—2p,

€ dpr L1 g 20 e (A3)
Jo (Pi+P2) 291 i
G 1 2
Te e L L tm e e (A%)
Jo (P1+92) 3Pl 39: 3




Hydrogen atom in semi-infinite space 1493

in terms of the exponential integral function E,(x) (Abramowitz and Stegun 1965).
Substitution of equations {A2)-(Ad4) in equation {Al) leads to the final form

P10
T,(pio}= J' dp, pil4+4p,~2(1+6p,+4p7)E,(2p,) €]
Q

4pfo’  4p%5” J""

o1 pr2 dp1 pT(1+6p,+4p7) Ei(2p)) € (A3)

0

in which the last integral can be evaluated through a Gauss-Legendre quadrature.
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