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Abstract. The hydrogen atom in a semi-infinite space limited by a paraboloidal boundary, 
with the nucleus at the focus, is studied as a model of an atom an the surface of a solid. 
The energy eigenvalues, hyperfine structure, electric dipole moment and pressure of the 
system are evaluated as the paraboloidal boundary approaches the nucleus up to the 
position at which the atom becomes ionized. 

1. Introduction 

I n  this paper we formulate and solve exactly the problem of the hydrogen atom in a 
semi-infinite space limited by a paraboloidal surface. This system is of interest as a 
model of an atom on the surface of a solid. We have become involved with such models 
in connection with the study of electron emission by compressed rocks (Shevtsov ef 
a1 1975, Brady and Rowell 1986, Guo et nl 1988, Ley-Koo et a1 1989). More generally, 
the development of these models is important for the study of surface physical 
phenomena (Levine 1965, Jiang and Shan 1985, Shan ef a1 1985, 1987, Shan 1987, 
1990, Liu and Lin 1983, Satpathy 1983). 

There is evidence for the emission of electrons in rocks under compression up to 
the point of fracture. Shevtsov et al (1975) detected and collected positive electric 
charges from the surface of feldspar samples under pressures from 0 to 80 MPa. Brady 
and Rowell (1986) observed the characteristic light of various atmospheres surrounding 
fracturing granite (at 300 MPa) and basalt samples, and concluded that the exoelectron 
excitation of the ambient atmosphere is responsible for such light emissions. Guo et 
al (1988) reported the direct detection of electrons with a Geiger-Muller counter in 
fracturinggranite samples (at 170 MPa). Ley-Koo et al(1989) have proposed a possible 
mechanism, based on modeis of compressed atoms (Ley-Koo and Rubinstein i9is), 
for the production of electrons in rocks under compression. Models of atoms in boxes 
with penetrable walls (Ley-Koo and Rubinstein 1979) are capable of accounting for 
the production of electrons before and at the moment of fracture, with energies up to 
the order or one atomic unit, at pressures consistent with those of the experiments. 
The high-energy electrons reported by Guo et a1 (1988) cannot be directly explained 

.wo.u;~ :lave io be 
unrealistically high for the electrons to attain such energies. As pointed out by Ley-Koo 
et a1 (1989), additional experimental and theoretical work on the problem is needed. 
The energy distributions of the electrons before and at the moment of fracture need 
t o  be measured with the appropriate instrumentation. Models of atoms on  the surface 
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of the compressed solid sample must be developed and may serve as points of reference 
in the analysis of the problem under consideration. 

The present investigation is the starting point of the line of inquiry stated at the 
end of the previous paragraph. An atom inside a solid has been modelled as an atom 
inside finite volumes (Michels eta/ 1937, Ley-Koo and Rubinstein 1979,1980, Ley-Koo 
and Cruz 1981); the walls of the chosen volume simulate the confining effect on the 
atom due to its neighbouring atoms in the solid. An atom on the surface of a solid, 
on the other hand, can he mode!!ed BE BE B!OE in a semi-lnfini!e space, since 1:- 
neighbouring atoms lay only inside the solid. Models of atoms in semi-infinite spaces 
have been investigated in solid state physics to study donor atoms on semiconductor 
surfaces (Levine 1965, Jiang and Shan 1985, Shan et a/ 1985, 1987, Shan 1990) and 
Wannier excitons near a semiconductor surface (Liu and Lin 1983, Satpathy 1983). A 
qualitative difference between these models and the ones we propose to study is that 
the semi-infinite space of interest is the inside of the solid in the former and the ou!gide 
of the solid in the latter. Also in those models, the semi-infinite space is bounded by 
a plane, while in the problem of the rocks a curved surface is more appropriate. 

Here we investigate the hydrogen atom in a semi-infinite space limited by a 
paraboloidal surface, with the nucleus at the focus. This model is related to the  model 
of hydrogen atoms inside a box with paraboloidal surfaces (Ley-Koo and Rubinstein 
1980) as the limit of the latter in which one of the surfaces is moved out to infinity. 
Qualitatively both problems are different, but their quantitative solutions are based on 
the same equations and methods. Consequently, in section 2 we borrow the equations 
of Ley-Koo and Rubinstein (1980) and solve them for the boundary conditions of the 
atom in the semi-infinite space to obtain the energy eigenvalues and eigenfunctions of 
the lowest states of the system. In section 3, we obtain the expressions to evaluate the 
hyperfine splitting, the electric dipole moment and the pressure of the atom in the 
ground state for different positions of the paraboloidal boundary. Numerical results 
for these properties are presented in section 4 together with a discussion of their 
changes as the paraboloidal surface approaches the nucleus u p  to the point at which 
the electron abandons the atom. In the appendix we give the detail to evaluate the 
integrals in the anisotropic hyperfine splitting. 
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2. Energy eigenvalues and eigenfunctions 

In the notation of Ley-Koo and Rubinstein (1980) we use parabolic coordinates 
( f =  r-  z, '1 = r +  z, Q )  to define the position of the electron relative to the nucleus in 
the hydrogen atom. The eigenvalue problem for the hydrogen atom in a semi-infinite 
space limited by the paraboloidal surface, f = C O ,  is defined by the Schrodinger equation 

and the boundary conditions 

$( f = 50, '1. a )  = 0 
$(5,'1 + m , a )  = 0 

on the wavefunction. 
Equation (1) is separable and admits the factorized solution (Buckingham 1961) 

$( f ,  '1. a ) =  CWOH('1) 'Wa) .  (3) 



Hydrogen atom in semi-infinite space 1483 

The factor depending on the azimuthal angle corresponds to eigenstates of the axial 
component of the orbital angular momentum 

m =0,  *l, *Z,. . . ( 4 b )  

i.e. v, T, 8 , .  . , states. The other factors satisfy the ordinary differential equations 

where the separation constants K ,  and K ,  are constrained by the relation 

Ze' 
K ,  + K ,  = -. 

2 

Both equations (5a) and (56) are mathematically of the same type and can be dealt 
with at the same time by introducing the independent variable qi and the function Q,, 
with i = 1,2 corresponding to the situations of 5 and 7, respectively. The regular 
singular point qi = 0 is removed by  taking 

Qi(q0 = 9!""'f(f(qi) (7) 

after which equations ( 5 )  transform into 

In terms of the Bohr radius, a,= h 2 / p e 2 ,  and the energy parameter U, such that 

it is convenient to introduce the dimensionless variables 

zqi 
Pi =- 2aou 

and to reparametrize the separation constants: 

2pKi Z v ,+t ( lm/+ l )  
+i2 - a o  Y 

Then equations (6)  and (8) become 

v,+ v2+)ml+1  = Y 

and 
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The solutions of equation (13) are well known. For i = 1, we use the power series 
expansion developed by Ley-Koo and Rubinstein (1980) 

m 

f ( p J =  z P P ;  
r=o 

with the recurrence relation following from equation (131, 

For i = 2, we use the solution in terms of the confluent hypergeometric function 

~ ( P J  = e-pi ,6- ~ 2 ,  Iml + 1 , 2 ~ 2 ) .  (16) 
The energy eigenvalues (equations (9) and (12)) and the eigenfunctions (equations 

(31, (4), (71, (14) and (16)) are determined by the boundary conditions (equations 
(2a) and (26)), which take the explicit forms 

from (14), and 

u , = o ,  1 , 2 , 3 , .  . . (18) 
from (16), respectively. For chosen values of the position of the paraboloidal boundary, 
to, and of the quantum numbers m and v2, equation (17) can be satisfied only for 
discrete values of V I ,  since the coefficients cl"' (equation (15)) and the energy parameter 
v (equation (12)) depend explicitly on U,. This results in discrete values for the energy 
(equation (9)). 

In order to carry out the numerical calculations for a given choice of m and v2 we 
start by fixing the value of U,. Then the values of v (equation (12)) and of the energy 
equation (9) are also fixed. Thus the coefficients of equation (15) can be generated, 
and the zeros of the sum of equation (14) can be obtained to the desired accuracy 
wicn ihe necessary iiniie number of terms. Tie  correspondiiig zeros ,ila deiemine ihe 
positions of the paraboloidal boundaries 

~ ~ ~ I _ I  

of the semi-infinite spaces for which the eigenvalue problem of the hydrogen atom 
has been solved. 

It is of special interest to determine the position of the paraboloidal surface limiting 
the semi-infinite space for which the hydrogen atom becomes ionized. We go back to  
equation (sa)  taking the vanishing value of the energy, E = 0, corresponding to the 
limit v+m, u,+m, for which, according to equations (11) and (6), K , = Z e 2 / 2  and 
K 2  = 0. With the additional change of variable 

x = 2 E  

equation ( S a )  becomes the ordinary Bessel equation (Abramowitz and Stegun 1965) 
dZ d ( dx2 dx  

x2 -+ x-+ (2 - m2) 
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Then the boundary condition equation ( 2 a )  gives the position of the paraboloidal 
boundary 

in terms of the zeros of the regular Bessel function of order m. The successive zeros, 
n = 1,2,3,. . . , correspond to the successive orders of excitation of the degree of 
freedom associated with the &coordinate. Notice that the limit situation analysed 
above is independent of the order of excitation of the degree of freedom associated 
with the 7-coordinate (equation (18)). This means that all the eigenstates JlVqm with 
fixed values of n and m, but different values of v2 tend to become ionized for the same 
position (equation ( 2 2 ) )  of the paraboloidal boundary of the semi-infinite space. 

3. Ground state properties 

In  this section we evaluate the hyperfine splitting, the electric dipole moment and the 
pressure of the confined atomic hydrogen in its ground state, 

as a function of the position to of the confining wall. 
The isotropic hyperfine splitting is given by the Fermi contact term (Atherton 1973) 

and requires the evaluation of the normalization constant C in equation (23). This is 
accomplished by imposing the normalization condition on the wavefunction ofequation 
(23). 

1 = 1 I$(& 7, ~ ) l ’  d V 

For a chosen value of v I ,  the energy parameter Y (equation (12)), the coefficients cia) 
(equation (15)) and the zeros plo of equation (14) are numerically determined as 
indicated in section 2 .  Thus the numerical evaluation of Ai,, (equation (24)) can also 
be accomplished by carrying out the summations in equation (25). 

The axial anisotropic component of the hyperfine splitting is given by the expectation 
value of the corresponding component of the dipole-dipole operator (Atherton 1973), 
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The last double integral has an integrand with the integrable singularity at p, =o, 
p2=0,  which according to the method of Stephen and Auffray (1959) gives the 
contribution 

E Ley-Koo and R M G Garcia-Castela’n 

is evaluated in the appendix and reduced to a form (equation (A5)) which can be 
computed numerically. The contributions of equations (27a) and (27b) to the double 
integral in equation (26a) transform the latter into 

m 

Z ( $ c ? h ! ” )  T,(pd (266) 

where it is recognized that the contribution from the integrable singularity is half the 
value of equation (24) and that all the factors and coefficients in the second term are 
also known. 

The expectation value of the electric dipole moment of the confined hydrogen 
atom, -e (r ) ,  has only a non-vanishing axial component due to the invariance of the 
system under rotations around the axis of the confining paraboloidal surface: 

A0 33-2Airo+4gePgNPNC2 -1 
p = o  r-0 

Concerning the pressure in confined atoms, it must be.recognized that since the 
original work of Michels et a l  (1937) such a pressure has been evaluated only for the 
case of s states in spherical boxes, for which the pressure is uniform due to the symmetry 
of both the state and the box. If one considers p states in spherical boxes, it is realized 
that the pressure is not uniform, vanishing in the nodal equator and increasing towards 
the poles, as determined by the angular variations of the electron probability density. 
Correspondingly, in the system under consideration in this paper, the pressure is not 
uniform in the different points of the paraboloidal surface bounding the semi-infinite 
space. In order to evaluate the pressure in each point, we introduce the energy density 
(Hirschfelder 1978) 

&(to, 7. e )  A? AV = (I,” h A h ,  d tb*f ib )  A V  AV (29) 

associated with a cylinder-like element around the points with a sectional area 
h,h, A? A g  from 5 = 0 to 5 = to, where the h are the scale factors associated with the 
respective coordinates, The relative change in the energy equation (29) as the para- 
boloidal boundary is changed infinitesimally, divided by the area of the cross section 
of the element gives the pressure 

By using the explicit form of the ground state wavefunction (equation (23)), and the 
fact that it is an eigenfunction of the Hamiltonian operator with the eigenvalues of 
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equation ( 9 ) ,  then the energy density function of equation (29) becomes 

By using equations (25) and (31) the pressure of equation (30) takes the form 
ZSe2 

P(50, v)=-- 
4va0v pl0+ p2 

T h e  fraction inside the brackets as well as its derivative can be calculated numerically 
as a function of pl0 ,  for chosen values of p2.  

4. Results and discussion 

Some illustrative numerical results for the energy eigenvalues, hyperfine splitting, 
electric dipole moment and pressure of the hydrogen atom in semi-infinite spaces are 
presented in the following tables and figures, as functions of the position of the 
paraboloidal surface boundary. 

Table 1 contains the numerical values of the energy (equation ( 9 ) ) ,  and the energy 
parameters (12) and (18), for the lowest states of the hydrogen atom and different 

Table 1. Energy and energy parameters far the lowest states of the hydrogen atom in a 
semi-infinite space bounded by different paraboloidal surfaces. 

l oo r )  -1.00000 
-0.99980 
-0.84168 
-0.27701 
-0.17361 
-0.01384 

(01r) -0.25000 
-0.24752 
-0.18904 
-0.09183 
-0.01208 
-0.00346 

(IOU) -0.25000 
-0.24876 
-0.12755 
-0.06250 
-0.01876 
-0.01384 

1 
1.0001 
1.09 
1.9 
2.4 
8.5 

2 
2.01 
2.3 
3.3 
9.1 

17 

1 
2.005 
2.8 
4 
7.3 
8.5 

0 
0.0001 
0.09 
0.9 
1.4 
7.5 

0 
0.01 
0.3 
I .3 
7.1 

15 

0 
1.005 
I .8 
3 
6.3 
7.5 

0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
I 
I 

0 
0 
0 
0 
0 
0 

m 
11.5565 
3.8345 
2.0475 
1.8678 
1.5381 

m 
12.5540 
4.8310 
2.7182 
1.7335 
1.5862 

m 
24.6928 
10.6677 
9.1771 
8.2858 
8.1704 
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positions (equations (17) and (19)) of the paraboloidal boundary of the semi-infinite 
space. The states are designated with the notation ( n l n , m )  in terms of the order of 
excitation of the respective degrees of freedom. In the limit in which the boundary is 
very far, the energy of the states approaches the value for the free hydrogen atom with 
principal quantum number n = n, + n2+ Imlf 1. While table 1 is restricted to the lowest 
U states, figure l ( a )  contains the corresponding energy curves for these and other U 

states, and figures I ( b )  and l ( c )  correspond to T and S states, respectively. If these 
curves are followed starting from large values of to, i.e. when the paraboloidal boundary 
is very far, the energies are close to the free hydrogen atom energy values and have 

E Ley-Koo and R M G Garcia-Castelan 
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Figure 1. (continued) 

the degeneracy n ,  + n2+ 1. As the paraboloidal boundary gets closer, to taking smaller 
values, the degeneracy is removed and the energies increase monotonically due to the 
confinement effect. When the paraboloidal boundary takes the positions given by 
equation (22), the corresponding states have zero energy, becoming degenerate, and 
the atom is at the threshold of ionization. 

Table 2 gives the numerical values of the isotropic and anisotropic components of 
the hyperfine splitting, the electric dipole moment and the pressure of the hydrogen 
atom in the ground state for different positions of the paraboloidal surface boundary. 
Figure 2(a) gives the variation of the isotropic hyperfine splitting equations (24) and 
(25)) as a function of Co. It starts from the value of 50.762 mT for the free hydrogen 
atom for large values of to, increases slowly at first and then more rapidly as the 
paraboloidal surface is placed closer in; eventually, A!,, reaches a maximum and then 

Table 2. Isotropic and anisotropic components of hyperfine splitting, electric dipole 
moment and pressure for the hydrogen atom in a semi-infinite space. 

~~ 

10.0100 
6.4312 
3.8345 
1.8678 
1.7871 
1.6631 
1.5548 
1.5381 

50.8918 
53.4566 
61.8536 
30.3252 
23.8069 
13.0265 
4.3488 
3.2633 

0.0000 
0.0000 
0.0402 
2.7534 
2.4572 
2.1811 
1.1144 
0.8999 

0.0041 
0.1026 
0.3976 
2.0051 
2.4199 
3.6430 
6.9636 
8.16685 

1.6200 
0.0514 
0.0164 
0.0051 
0.0032 
0.0009 
0.00012 
0.0001 I 

P ( p , = l )  
( I O "  Pa) 

0.2700 
0.0045 
0.0035 
0.0020 
0.001 1 
0.0005 
0.00009 
0.00005 
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Figure 2. (a) Isotropic hyperfine splitting of the hydrogen atom in a semi-infinite space 
bounded by different paraboloidal surfaces. ( b )  Anisotropic hyperfine splitting Of the 
hydrogen atom in a semi-infinite space bounded by different paraboloidal surfacer. 
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drops to zero fairly rapidly as the boundary approaches the position at which the atom 
becomes ionized. The increase in the values of A,,, reflects the increase of the probability 
of finding the electron at the position of the nucleus due to the confiment effect of the 
boundary; however, if the boundary is too close its effect is to push the electron away 
from the nucleus. Figure 2(b )  shows the anisotropic hyperfine splitting as a function 
of the position of the paraboloidal boundary. It attains its vanishing asymptotic value 
for & 2 4 ,  then increases rapidly, reaching a maximum, and drops to zero also rapidly 

of the prolateness of the electron distribution in the confined hydrogen atom. Figure 
3 presents the monotonic variation of the electric dipole moment of the hydrogen atom 
from its asymptotic vanishing value to its infinite value as to gets smaller. Such a 
variation reflects the increasing value of the expectation value for the position of the 
electron (equation (28)) as the boundary gets closer. Figure 4 illustrates the variations 
af !he pressure nf !he hydrngen =!om ~n se!ec!ed pnin!s af!he parabn!oida! bncndaries 
(equation (33), specifically at the vertices, p 2 = 0 ,  and at the points with p2= I. The 
presence of the decreasing exponential functions of pz in equation (33) ensures that 
the pressure diminishes rapidly at points on the boundaly away from the vertex. The 
pressure also vanishes asymptotically for distant boundaries, increases, reaches a 
maximum and then drops to zero as the boundary gets closer. 

t tnLn. C m O l l P r  . I . l l . .PI  7%- ,.n.i+i..n r:nn d o  Inn..n+in.. /?&")) i r  am inA;rs+inn 
Y I  5 0  LVr..I Ol.."11..1 I Y I Y I I .  l l l b  y""1,"L D.6.' " I  -33 ,C'I"V,.".. \,.vu,, ,a a.. ..I".I"..VII 

Figure 3. Electric dipole moment of the hydrogen Mom in a semi-infinite space bounded 
by different paraboloidal surfaces. 

The study of the hydrogen atom in a semi-infinite space with a paraboloidal 
boundary is of boih inirinsic and praciicai iiiteresi. iis inirinsic vaiue is reiated to the 
fact that the quantum system under consideration has an exact solution as shown in 
this paper. Its utility can be appreciated through a consideration of the atomic properties 
that have been calculated. The ionization and pressure of the atomic system as functions 
of the position of the paraboloidal boundary provide physical information relevant 
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5 0  .'%' 

Figure 4. Pressure of the hydrogen atom in a semi-infinite space at vertices (p2  = 0) and 
at points with p I =  1 of different paraboloidal surfaces. 

for the understanding of the emission of electrons by compressed rocks; the correspond- 
ing analysis is to be carried out separately. Comparison of the hyperfine splitting and 
electric dipole moment of the hydrogen atom in semi-infinite space with the correspond- 
ing properties of the free atom or the atom trapped inside a solid gives a way to 
ascertain and characterize the surface effects. In addition to, but apart from the above, 
the present work allowed Ley-Koo (1991) to realize that in the hydrogen atom in a 
strong magnetic field the electron becomes confined inside a paraboloid, thereby 
breaking parity symmetry. 

Appendix 

The integrals T,(p,J appearing in the anisotropic hyperfine splitting (equation (276)), 
can be evaluated by first decomposing the dipole-dipole operator in the integrand into 
partial fractions: lo' e-*"> dp2) (AI) 

-*% dp, 
~ ~ ~ ~ ~ ~ ~ = ~ ~ ~ ' ~ ~ ~ ~ ~ 9 ( ~ ~ ~ ( e ~ , + ~ ~ ~ ~  (pI+pd4 . 
Then the integrations over p2 can be carried out by parts and reduced to 

(A2) 

(A3) 

(A4) 

1 1  

e-2P2dp, 1 1 2 
2 + - - $ E , ( 2 p I )  e2'I 

(Pl+P,)4-3P: 3PL 3Pl 
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in terms of the exponential integral function E , ( x )  (Abramowitz and Stegun 1965). 
Substitution of equations (A2)-(A4) in equation (A l )  leads to the final form 

JO 

in which the last integral can be evaluated through a Gauss-Legendre quadrature 
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