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Exact solution of the Schrodinger equation for a particle in 
a tetrahedral box 

H R Krishnamurthyt, H S Mani and H C VermaS 
Indian Institute of Technology, Kanpur-208016, India 

Received 8 December 1981, in final form 25 February 1982 

Abstract. We obtain the exact solution of the Schrodinger equation for a article-confined 

(mjJ2, -?r/J2, ~ 1 2 ) ;  (-714 r/&, 712) and ?r/&, -n/2). The energies 
are: for (i), Enl = (8f??r2/9mL’)(n2+ 1’- In) where L is the side of the triangle and 1, n 
are distinct non-zero integers and for (ii), E,,, = ( h 2 / 8 m )  x 
[3(1’ + m 2  + n 2 )  - 21m - 2mn -2nl] where 1, m and n are distinct non-zero integers. The 
wavefunctions have been classified according to the irreducible representation of the 
corresponding symmetry groups. 

to (&an equilateral triangle, Qi) a tetrahedral box with_corners (-TI / 2, - r / J 2 ,  -?r/2), 

1. Introduction 

Exact solutions of the Schrodinger equation for a particle confined to certain regions 
of space (either two-dimensional or three-dimensional) have been found only for a 
few cases, We have found an amusing way to obtain the solution of the Schrodinger 
equation for: (i) a particle confined to an equilateral triangle in two dimengons; (ii) 
a particle confined in a tetrahedral box whose corners are (-?r/J2, -.rr/J2, -7r/2), 
(IT/&, -TI&, ~ 1 2 ) ;  (-TI&, ?r/A,   IT/^) and (IT/&, a/&, 4 2 ) .  
Though (i) has been solved before using other methods, we believe that the results 
for the tetrahedral box are new. The solution to the problem is based on the 
Schrodinger equation of N hard cores confined to a length L in one dimension, the 
exact solution of which is known (Lieb and Mattis 1966). It is possible to transform 
the N = 3 and 4 cases of the hard-core problem into the problem of a single particle 
confined to a region in two and three dimensions respectively. It turns out that the 
region of confinement is an equilateral triangle for the two-dimensional case and a 
tetrahedron with corners specified as above for the case of three dimensions. To make 
the article self-contained, we reproduce the essential results of the N-hard-core 
problem in § 2. In § 3 we illustrate our method of transforming the equation of N 
hard cores to the Schrodinger equation of a single particle for the N = 3 case in detail. 
We then quote in 0 4 the results for the N = 4 case. The wavefunctions have been 
classified according to the irreducible representations of the respective symmetry 
groups. 
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2. Problem of N hard cores in one dimension 

Consider N hard cores (molecules of vanishingly small length and mass m) whose 
coordinates x i  are confined to lie between 0 and L, 

O S X i S L  i = l , 2 , . .  . , n .  (2.1) 

The cores are free to move in the allowed region and are to be treated as identical 
fermions. In particular, the wavefunction 

Cp(x1. . . x,) = 0 

whenever 

x. = x .  i , j = l ,  . . . ,  N. I 1, 

The Schrodinger equation 

h2 a2(p 

2m axi 
- - - C = E ( p  

with the above conditions (2.1) and (2.2), plus rigid boundary conditions has the 
following energy eigenvalues (Lieb and Mattis 1966): 

(2.4) E n l . .  . nN =(h’.rr’/2m~~)(n:+n:+. . . + n N )  2 

where ni are distinct positive integers. The corresponding wavefunctions are the 
determinants 

(2 .5 )  nl . . . nN I sin kNxl sin kNx2 . . . sin kNxN I 
where ki = .rrni/L. 

We can state the same problem in terms of periodic boundary conditions, which 
is the form used in the present investigation. In this case the wavefunction obeys the 
boundary conditions (using coordinates ei in place of x i ) :  

@(e1,. . . , ej + 2 ~ ,  . . . , 6,) = (p(el,. . . , e , .  . . , e,) 
For these boundary conditions, the energy levels are 

j =  1 , .  . . , N (2.6) 

h2 2 2 2 E n l . .  . nN =-(nl+n2+. . .+nN) 
2m 

and the wavefunction is the determinant 
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3. Particle in an equilateral triangle 

A useful transformation of the variables el . . . 0, which allows us to separate the 
centre of mass of the whole system is 

z1 = el - e, 
2 ,  =$(el + e,) - e, 

zi = i-’(ol  +. . . + e,) - eitl, i c N - 1  

ZN = N-’(81+ . . . + &). 

The Schrodinger equation in terms of the new variables is 

i + l  a2 N a’ + - ~ ] c p = E c p .  1 a2 . .+- 2+. . .+- - 
i az, ( ~ - 1 )  azN-l N az, 

(3.1) 

(3.2) 

For N = 3 these become 

t l  = el - e2 z2 =;(el + e2)  - e, 2 3  = :(el + e, + e3) (3.3) 

and 

(3.4) 

The 2 3  coordinate describes motion associated with the-centre of _mass and the 
dependence of cp on it is separable. If we think of ( z l / J 2 )  and z2J2/J3  as the x 
and the y coordinates of a single particle, then we reproduce the Schrodinger equation 
for a single particle. However, the boundary conditions which were simple in terms 
of 8’s have to be transformed in terms of new variables. Using 

- 
y1 = z 1 / J 2  = +(el - e,) 

We can find the restriction on the domain of the Y1,  Y2 plane. To achieve this we 
invert equation (3.5) and get 

el = yl/Jz+ y2/&+ Y 3 / h  

e2 = - y 1 / J 2 +  y2/J6+ Y3/& 

e3 = -2 y2/J6+ Y3/&. 

(3.6) 

Without loss of generality, we can restrict the @-space to the region 81 2 62, 0, 2 0 3  

and 6, + 2.rr 3 el. In terms of the Y’s these translate into the restrictions 

Y13 0, Y1 ss & Y2, Y1/Jzs2.rr- Y 2 4  (3.7) 

respectively. This corresgonds to the particle being confined in an equilateral triangle 
with corners (O,O),  (J2.rr,J;.rr) and (0,2J;.rr). The wavefunction for the single 
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4l .m(  YI, Yz) = 

particle can be obtained from equation (2.8) using the transformations (3.6). 

d Y 1 ,  y2, Y3) - - 
nl,  n2, n3 

exp[i1(2+$)] exp[il( -$+$)I exp[i(-%)] 

exp[ im(2+$)]  exp[ im(-$+$)] exp[ im( -%)I (3.9) 

[ *  ('1 y2 exp inl -+--+- fi J6 fi 
[. (yi y2 y3)] [. ( +-+-- exp in2 --+- exp in2 --+e+- exp in2 -- 

exp[in1(-Z+"+5)]  exp[ + in l ( -Z+" ) ]  
J2  JZ J3 J6 h 
yi y2 y3)] [. ( 2y2 " ) ]  

J6 J5 J2  J6 h J5 J6 J3 

J2 J6 6 JZ J6 J3 
exp [. in3 (yi -+=+- y 2  y3)] exp [. in3 ( -- y1 +2+2)] exp[ in3( - x + z ) ]  2Y2 Y3 

= exp[i(nl + n2 + n3) y3/&] 

I 1 1 

exp i(nz-nl) -+= exp i(n2-nl) --+- exp i (nz-nd  -- 

exp[ i(n3 - n l ) ( 2 +  
[ (yl  JZ J6 y7.)1 [ *  ( 2 31 [ a  ( ?)I 

X 

exp[ i(n3 - nl)(-  $+ $)] exp[ i(n3 - n1)( - %)] 

1 

(3.8) 

The factor exp[i(nl + n2 + n3) Y 3 / f i ]  will be suppressed as it is separable and refers 
to the centre of mass motion of the three hard cores. We are interested only in the 
Yl, Y2 part. Writing 

I 1 1 1 I 

we immediately see that it satisfies the Schrodinger equation 

-(h2/2m)[a2/a~:+a7./a~:I41m(y1, ~ 2 )  = ~ l , m d l , m ( ~ i ,  ~ 2 )  (3.10) 

with 

Elsm = (h2/3m)(12+m2-Im). (3.11) 

This can either be obtained from 

E ~ ~ , , , ~ , , , ~  = ( h 2 / 2 m ) ( n : + n ~ + n : ) = ( h 2 / 2 m ) [ S ( n l + n 2 + n 3 )  + S ( I  +m2-lm)] 

and removing the centre of mass energy or by direct substitution of din,,, from equation 
(3.9) in equation (3.10). 

7 . 2 2  

For an equilateral triangle of side L, we will have the energy as 

El,m = (8h2.rr2/9mL2)(I2 + m2- Im) (3.12) 

and Yi (i = 1,2) are to be interpreted as (27rGYJL) in equation (3.9). This has 
been derived using other methods (Lame 1852, Mathews and Walker 1970). 
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We now discuss the symmetry of the solutions. It is clear that we have six symmetry 
operations under which the Schrodinger equation with the boundary conditions 
remains invariant, which form the group u3,. 

We classify our solutions in terms of the irreducible representations A t ,  A2 and 
E of u3v (Landau and Lifshitz 1958). In order to do this it is more convenient to 
transform the Y l ,  Yz coordinates so that the origin coincides with the centre of the 
triangle. We use 

y* = y2 + &7 (3.13) y1 = y1+ J L i 3 ,  

1 1 1 

(3.14) 
The operation of C3 and uv in terms of y1 and y2 are 

c3 : yl+-&Yl-J3Y2) Y 2 + - iN3Y 1 + y2) (3.15) 

and 

Uv : Y1’Yl Y2’-Y2. 

It is easy to verify that 

~ 3 4 f m  = e x p [ i W  + m)14rm 

uv41m = -exp[i$.rr(I+ m)]q5L. 
and 

It immediately follows that, if 1 + m = 3 p  where p is an integer 

(3.16) 

i(41m -4L) transforms as A,  and 

i(& + #&) transforms as A2. 

On the other hand, if I + m = 3p + 1 or 3p +2 ,  41m and 4:m form a basis for the 
irreducible representation E. 

4. Particle in a tetrahedron 

The procedure which leads to the solution of a particle in a tetrahedron with corners 
A (-77 J?, -?/J?, -7712); B (TI&, -TI&, ~ 1 2 ) ;  c (-IT/&, IT/&, 7712) and 

we work with the N = 4 solution of equation (2.8). We will not repeat all the details, 
but only write down some of the relevant steps and the final results. The transforma- 
tions are 

D (T/ J 2 ,  .rr/J2, -.rr/2) is similar to the one described in the previous section. Here 

- 
e, = ;y4 + i y 3  + ;y&+ $77 

e3 = & y 4 + & y 3 - $ y 1 J 5 - i ~  

e 2 -1 - 2y4 - i y 3  + i y z  J2 + $T 
e 4 -1 - 2y4 - 3 ~ 3  -4yZJ2 - 4 ~ .  

- 3 (4.1) 
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The conditions lead to the particle being 
confined in the tetrahedron ABCD in the y l ,  y 2 ,  y 3  space. The wavefunction after 
removing the centre of mass coordinate is the 4 x 4 determinant 

B e2, B 63, e3 5 e4 and e4+ 297 L 

1 1 

y1  y 3  3 7 3  [. ( y 2  y 3  y2 y3 3 7 1  y1  y 3  [ ( 
y1 y 3  33 [. ( y2 y3 3 3 3  

[. ( 
71 [ ( 

y1 y3 3 3 3  [. ( y 2  y 3  73 [. ( 

exp 11 :+-+- exp 11 ---+- exp 11 --=+--- exp il 
[ ' ( J 2  2 4 J2 2 4 J2  2 4 JT 2 4 

1' (J2 2 4 J2  2 4 J2 2 4 JZ 2 4 

[ '  (J2 2 4 J2  2 4 J2  2 4 J 2  2 4 

exp im -z+-+- y1 y 3  3 7 3  exp [ im ( y 2  y 3  exp im -:+--- exp im 

exp in --+-+- exp in -z--+- exp in 

(4 .2)  

(4 .3 )  
The corners of the tetrahedron have been chosen so that the line joining the mid 
points of AC and BD is the y l  axis, that joining the mid points of AB and CD is the 
y 2  axis, and that joining the mid points of A D  and BC is the y 3  axis. The tetrahedron 
goes into itself (see figure 1 )  under: 

the energy is 

El,, = (h2 /8m)[3 (Z2+m2+n2) -2 lm -21n -2mn) l .  

(i) Identity (01), 
(ii) rotation of T about y 1  axis (02), 
(iii) rotation of T about y 2  axis (03), 
(iv) rotation of T about y 3  axis (04), 
(v) reflection in the plane y 1  = y 2  (051 ,  

(vi) reflection in the plane y 1  + y 2  = 0 (06), 
(vii) rotation of in. about the y 3  axis followed by reflection in the plane y 3  = 0 (O,), 
(viii) rotation of -$T about the y 3  axis followed by reflection in the plane y 3  = 0 

(OS). 

Figure 1. Geometry of the tetrahedral box for which (4.2) gives the eigenfunctions of the 
Schrodinger equation. 
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The operations form an eight-element group D2+ The irreducible representations 
are classified as A1, A2,  B1, B2 and E (Landau and Lifshitz 1958). One also has 

0241mn = -exp[i(i + m + n )3~]4T,,, 
0 3 4 1 ~ ~  = -exp[-i(l+ m + n)&r]4Tmfl 

0 4 4 / m n  = exP[i(l+ m + n ) V ] 4 i m n  

0 5 4 i m n  = 4T,n 
0641mn = exp[i(l+ m + n).nId~T,,, 

0 7 4 i m n  = -exp[i(l+ m + n ) h ] 4 i m , ,  

~ v # q ~ , ,  = -exp[-i(l+ m + n ) 3 ~ ] 4 i ~ , , .  

These can be used to determine the symmetry properties of the wavefunctions. In 
particular, 

(i) for 1 + m  + n  =4p, where p is an integer, the wavefunction ( 4 1 , ~ , , , - 4 ; ~ , , , )  
belongs to the representation B1 and 

(ii) for 1 + m  + n  = 4 p + 1 ,  4p+3; ~$ l , , , , , ~  and 4zm,,, form the basis for the two- 
dimensional representation E; and finally 

(iii) for 1 + m + n = 4p + 2; (4lm,, + 4kf l )  belongs to Al and ( + I . ~ . , ,  - 4zm,,,) belongs 
to the representation Al .  

+ 4zmm,,,) belongs to Bz;  
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