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Study of Exactly Soluble One-Dimensional N-Body Problems 

J. B. MCGUIRE 

University of California, Los Angeles, California 
(Received 9 August 1963) 

In this paper it is shown that several cases of one-dimensional N-body problems are exactly soluble. 
The first case describes the motion of three one-dimensional particles of arbitrary mass which interact 
with one another via infinite-strength, repUlsive delta-function potentials. It is found in this case 
that the stationary-state solution of the scattering of the three particles is analogous to an electro­
magnetic diffraction problem which has already been solved. The solution to this analogous electro­
magnetic problem is interpreted in terms of particles. Next it is shown that the problem of three 
particles of equal mass interacting with each other via finite- but equal-strength delta-function 
potentials is exactly soluble. This example exhibits rearrangement and bound-state effects, but no 
inelastic processes occur. Finally it is shown that the problem of N particles of equal mass all inter­
acting with one another via finite- but equal-strength delta functions is exactly soluble. Again no in­
elastic processes occur, but various types of rearrangements and an N-particle bound state do occur. 
These rearrangements and the N-particle bound state are illustrated by means of a series of sample 
calculations. 

I. INTRODUCTION 

SINCE the advent of quantum theory, physicists 
have relied on exactly soluble problems to 

describe some of the strange effects which have 
quantum mechanical origin. The way in which the 
potential enters the SchrOdinger wave equation 
makes this equation soluble only for a very limited 
class of potentials, and with the exception of the 
Coulomb potential and the harmonic-oscillator 
potential, the exactly soluble problems are not 
particularly good imitations of the interactions which 
exist in the physical world. On the other hand, 
these exactly soluble problems illustrate a broad 
range of effects which are present in the physical 
world, and therefore at least allow us a qualitative 
description of the processes which can occur, and 
perhaps an insight into perturbation and approxima­
tion methods which can be used in more physical 
problems. 

One would hope that exact solutions of N-body 
problems would be of help in producing similar 
insights into qualitative effects and possible approx­
imation methods for problems of this type. There 
are, however, additional mathematical difficulties 
introduced by the presence of more than two particles 
which have made the exact solution of an N-body 
problem a more elusive goal. 1.2 These mathematical 
difficulties are related to the broad range of physical 
effects which ar~ possible due to the presence of 
more than two particles. 

Let us discuss the kinds of effects which may 
occur in N-body problems. We know that the 

1 E. Lieb and H. Koppe, Phys. Rev. 116,367 (1959). 
2 R. Jost, Commun. Math. Helv. 28, 173 (1954). 

many-particle wavefunction will contain all of the 
information about two-particle interactions because 
we may isolate two particles by putting the other 
particles so far away that their influence on the 
remaining two is negligible. Under these circum­
stances we will recover the two-particle wavefunc­
tion. More complicated effects arise when the N 
particles are close together in space and time. 

Our task is to discuss those effects which arise 
from the proximity of the N particles, so let us 
focus our attention on the simplest problem which 
contains these effects, the three-body problem. Even 
here we expect a large number of physical effects. 
We expect finite probabilities for any two particles 
with an attractive potential between them to be 
bound in the final state, even though all of the 
particles are free in the initial state. Also, there 
will be finite probabilities for the particles to be 
scattered from a free state to another free state with 
a different distribution of energy among the particles. 
If a free particle is incident on a bound state we 
would expect that this free particle could ionize, 
excite, or perhaps replace a bound particle. In 
general we would expect finite matrix elements 
between any initial and final state which have the 
same energy. 

In view of the many effects which exist in problems 
of this type it is not surprising that exact solutions 
or even reliable approximation methods are difficult 
to find. In order to construct exactly soluble prob­
lems we are going to be forced to make many 
simplifying assumptions. We are going to deal with 
a three-body problem where all of the particles 
move in only one dimension and interact with one 
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ONE-DIMENSIONAL N-BODY PROBLEMS 623 

another through delta-function potentials. We will 
later argue that this does not a priori restrict the 
number of physical effects which can occur, except 
for the fact that two particles which interact 
through an attractive delta-function potential have 
only a single bound state, and therefore an incident 
third particle cannot excite to another bound state, 
but only to the continuum. 

II. FORMULATION OF THE PROBLEM 

We consider the Hamiltonian 

h
2 (1 d

2 1 d2 1 d2
) 

H = -2 M 1 dx~ + M 2 dx; + M a dx~ 
+ Ao(xl - x2) + BO(X2 - xa) + CO(Xl - xa), 

which arises when three particles of mass M 1, M 2, M a 

at positions Xl, X2, X;j interact with one another via 
delta-function potentials with strengths A, B, C 
which depend on coordinate differences between 
particles. 

If we make the change of variables 

z = (Ml + M2 + Mar!(MlXl + M2X2 + Maxa), 

[M3(Ml + M2)]~ (MlXl + M 2x2 ) 

y = (M M M )4 u- M - X3 , 
1 + 2 + 3 in 1 + 2 

X = (MlM 2)!/(Ml + M2)t(Xl - X2), 

the reSUlting Hamiltonian will be 

h
2 

(d
2 

d
2 

d
2 

) (1) H = -- -2 + -2 + -2 + Ao-x 
2 dz dy dx J.l12 

+ B 0(1...- [x cos a + y sin a]) 
J.l23 

+ Co(1...- [x cos (3 - y sin (3]), 
J.l13 

J.l~; = [~i + ~;T, 
tan a = [(Ml + M2 + M3)M2/MlMa]!, 

tan (3 = [(Ml + M2 + M3)Ml/M2M3]!' 

Transformations of this type are discussed in the 
Appendix. Formulas are derived which are valid 
for N particles and not restricted to one dimension. 

If we remove the center-of-mass motion of all 
three particles and eliminate the time from Schro­
dinger's equation, the stationary-state equation for 
the internal motion of the three particles will be 

[ _ h 
2 (!f-. !f-.) 

2 dX2 + dy2 

+ A 0(1...- X) + BO(1...- [x cos a + y sin a]) 
J.l12 P,23 

+ COC~3 [x cos {3 - y sin (3]) - E J~ = o. 

FIG. 1. Potential diagram for three particles interacting in 
one dimension. 

This differential equation may be interpreted as 
describing the motion of a single particle in a 
two-dimensional space. Interpreting the differential 
equation this way may seem awkward since it 
tends to obscure the true nature ()f the physical 
problem, but we will find that the interpretation 
in terms of particles is not difficult once we have 
the solution to this mathematically equivalent 
problem. 

The potential in which the single two-dimen­
sional particle moves is zero everywhere except on 
the lines X = 0, x = y tan (3, x = -y tan a, as 
shown in Fig. 1. We see that we must solve 
(\72 + k2)~ = 0 everywhere except on the boundaries 
provided by the "line" delta functions. It is well 
known that the boundary condition on such a 
delta-function line is that there is a discontinuity 
in the normal derivative of the wavefunction which 
is equal to the strength of the delta function times 
the value of the wavefunction on the boundary. 

Even this problem is an extremely difficult one 
mathematically and only limited progress has been 
made toward its solution. In Sec. IV we will solve 
a special case of this problem where the masses 
of the particles and the strengths of the delta func­
tions are chosen in a particular way. 

Another special case of interest has already been 
solved for us. If we take the strength of the delta­
function interactions to be infinite, then the wave­
function must approach zero on the delta-function 
boundaries. This problem is analogous to the diffrac­
tion of electromagnetic waves from wedges and 
corners made of conducting materials, and is soluble 
for arbitrary angles between the delta-function lines 
and hence for arbitrary masses of the interacting 
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624 J. B. McGUIRE 

FIG. 2. Coordinate system 
for the electromagnetic dif­
fraction problem. 

particles. We propose to make a quantum mechanical 
interpretation of the solution to this analogous 
electromagnetic problem. 

m. INFINITE-STRENGTH DELTA FUNCTIONS 

A. Discussion of the Solution 
The analysis of the infinite-delta-function problem 

is simplified by the fact that the wavefunction is 
confined to one of the wedges of Fig. 1. We interpret 
this as meaning that the particles stay in a particular 
order in the one dimension. The particles cannot 
transmit through one another because they cannot 
penetrate the infinite-strength delta-function wall. 

Most readers will recall that certain wedge 
problems may easily be solved by the method of 
images, which is equivalent to tracing rays through 
a wedge until the wave vector for the ray is pointed 
in such a direction that it will not hit one of the 
sides of the wedge again. For a wedge of arbitrary 
angular opening, there will be two such rays emerging 
from the wedge corresponding to the bifurcation of 
the incident wave by the two sides of the wedge. 
If, however, the angular opening of the wedge is 
r/n, the reflected rays will emerge in parallel with 
one another and fill all of the space within the 
wedge. In this case the entire solution to the problem 
requires only the sum of the incident plus the 
reflected waves. 

For a wedge of arbitrary angular' opening, the 
outgoing waves will emerge in different directions 
and either overlap or not fill all of the space within 
the wedge, and thus something must be added to 
the solution to fit the continuity conditions along 
the so-called "boundaries of geometric optics" which 
are the terminators of the regions filled by the 
outgoing waves. 

Diffraction problems of this type have received 
extensive treatment in the literature beginning with 
Sommerfeld's paper in 1896.3 The interested reader 

I A. Sommerfeld, Math. Ann. 47, 317 (1896). 

can trace the literature from Oberhettinger' (our 
principal source), who has given a particularly 
convenient treatment for quantum mechanical 
interpretation. 

The solution, as we have argued that it should, 
consists of all of the reflections in the various regions 
of space plus a diffraction term which fits the con­
tinuity conditions along the boundaries of geometric 
optics. For the scattering solution we are interested 
only in the far-field part of this diffraction term. 
For a discussion of the general boundary conditions 
and form of the solution of problems of this type, 
see Ref. [5]. We write the far-field solution as 

y; = Y;inoid.n~ + two-body reflections 

+ f(l{), I{)', a)(eikr /r') + OCr-i), 

where I{) and I{)' are, respectively, the angles of the 
incoming and outgoing k vectors, and a is the angular 
opening of the wedge. The coordinate system is 
shown in Fig. 2. 

Oberhettinger has provided an expansion from 
which we may calculate f, 

f<: () ~ ~ sm, ~:~)~ sm ~, .. l. 
l (Sin 1r: sin 1r:) _ (cos 1r: cos 1r: - cos : ) 

Notice that f(l{), I{)'; 1r/n) = 0, so that, as asserted 
earlier, there is no diffraction when the wedge is 
of angular opening 1r/n. The singularity of f along 
the boundaries of geometric optics, where 1r ± 
(I{) ± I{)') = 2na, is required to fit continuity con­
ditions. 

Before going further let us analyze a particular 
example to practice interpreting this solution in 
terms of particles. 

B. Analysis of a Particular Example 

As an example we will take the interaction 
between two particles of equal mass and a third 
particle of infinite mass. The two light particles 
interact with each other, but we will assume that 
only one of the light particles interacts with the 
massive particle. All interactions are infinite­
strength, repulsive delta functions. 

The potential diagram for this problem is shown 
in Fig. 3. We must solve (\72 + e)y; = 0 with 
Y; = 0 on the lines x = 0 and x = y. The inter­
pretation of the solution of this problem is simplified 

'F. Oberhettinger, J. Res. Natl. Bur. Std. 61, 343 (1958). 
6 E. Gerjuoy, Phys. Rev. 109, 1806 (1958). 
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ONE-DIMENSIONAL N-BODY PROBLEMS 625 

by the fact that the x coordinate of the potential 
diagram is the position of the x particle relative 
to the massive particle (the x particle is the one 
which interacts with the massive particle), and 
the y coordinate is the coordinate of the y particle 
relative to the massive particle. 

If the incoming wave is in Region I no three-body 
reactions occur since Region I is a wedge of 7r / n. 
The total solution in this region is a succession 
of the two-body problems. The experimental arrange­
ment corresponding to Region I would have the y 
particle starting to the left of the x particle as shown 
in Fig. 3. 

In Region II the situation is more interesting be­
cause the angular opening is h. The experimental 
arrangement which corresponds to this region has 
the x particle starting to the left of the y particle, 
again as shown in Fig. 3. 

We will assume that the incoming beam is 
Ilcollimated" in the sense that the x and y particles 
in the incoming beam are adjusted so as to be at 
the origin at about the same time. This introduces 
a correlated distribution in the incoming state, that 
is the probability of finding an x particle per unit 
length depends upon where the y particle is. The 
collimation is necessary because otherwise the proba­
bility per unit volume to find the x particle at Xo 

and the y particle at Yo would depend on inter­
ference terms between the incident wave the . ' two-partICle reflected waves and the true three-body 
waves. By introducing a collimation we have 
allowed the possibility of positioning the detector 
outside the beam and the two-particle reflections 
where the true three-particle effects are directly 
observable without interference. 

As is usual in problems of this type, the proba­
bility per second to be scattered into some Iisolid" 
angle is proportional to the incident flux. This 
flux is neither the x-particle flux nor the v-particle 
flux, but the magnitude of the vector flux in the 
two-dimensional space. We will assume that the 
incident beam is normalized such that 

.f, _ ( )! ik.x ik •• 
'Y incident - PxP. e e , 

where Px and P. are, respectively, the number of x 
particles per unit length and the number of y 
particles per unit length. Under these circumstances 
the magnitude of the fluxe is P"P.(v! + v;)! and 

6 It ca~ be verified that this quantity is the scale factor for 
the reactIOn rate by calculating the reaction rate from the 
"golden rule" or by an~yzing what happens to each Fourier 
~o~ponent of a sltuatIOn where a packet of x particles is 
lllCldent fr:om the left and a packet of y particles is incident 
from the nght. 

Region II 

Region I 

y parlicle 
source 

x particle 
source 

Manl e Body 

(xperimental Arrangement Corr.sponding 10 Regian I 

. Massive Body 

y parllcle 
source 

Experimental Arrangement Corresponding 10 Reolon II 

FIG. 3. Potential diagram and corresponding experimental 
arrangements for the particular example. 

the reaction rate is 

w = PxP.(v! + v;)i If(tpW 
per second per unit solid angle. 

A possible experiment would be to place an x­
particle momentum detector to the left of the 
massive particle and measure the outgoing mo­
mentum distribution of x particles. This distribution 
would have two high peaks corresponding to the 
geometrical reflections of the incoming beam but 
it would also have x particles of every po~sible 
momentum from zero up to the maximum possible 
consistent with the conservation of energy. The 
height of the peaks of the distribution would be 
proportional to the total number of the incoming 
particles, whereas the distributed portion of the 
spectrum would be proportional to the beam flux. 

A second type of experiment would be to count 
coincidences of particle x situated between Xo and 
Xo + t.xo and particle y situated between Yo and 
Yo + t.Yo. The coincidence rate for this experiment 
is computed from the reaction rate given above 
where tan tp' = xo/Yo. For fixed t.xo t.Yo, the coinci­
dence rate would decrease as 

(x~ + y~ri. 
C. Summary of the Infinite-Delta-Function Results 

The goals of analyzing the infinite-strength delta­
function problem were limited. Of the three-body 
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626 J. B. McGUIRE 

(5) (s) 

FIG. 4. Ray diagram which applies when the incoming (6) 
hits potential (a) first. 

physical effects outlined in the Indrotuction the 
only one we expected to see was the redistribution 
of energy among the three particles, and this we 
have seen in our particular example. We could not 
have expected to see any of the other effects, 
because by using infinite-repulsive delta-functions 
for all of the interactions we have guaranteed that 
there will be no bound states to be ionized or 
rearranged. 

We have, however, learned a good deal about 
the structure of solutions of problems of this type, 
and we could at least make a guess as to the form 
the solutions might take if the delta-function walls 
were transmissive. We would guess that the wave­
function would consist of all of the transmitted and 
reflected waves in the various regions of space, 
plus diffracted waves which fit the continuity con­
ditions along the boundaries of geometric optics. 
In spite of these insights no one has yet been able 
to construct a general solution to the problem 
where the interpotential angles are arbitrary. 

Suppose we could construct a problem which 
bears the same relations to the finite-strength delta­
function case as does the 7r/n wedge to the infinite­
delta-function case, that is a problem in which 
there is no diffraction. If such a problem exists, all of 
the angles between the potential walls must be 7r/n 
because the transmission from wedge to wedge would 
assure that there would be some problability to get 
into a diffracting (non 7r/n) wedge. Since the three 
interpotential angles of Fig. 1 must add up to 180° 
there are only three possibilities for mass ratios 
where all angles are 7r/n. These possibilities are: 

(1) The masses of two like particles are in­
finitesimal compared with that of a third particle. 
The interpotential angles in this case are 45°, 45 0

, 

and 90 0
• 

(2) Particle 1 is of infinite mass compared to 
particle 2 which in turn is three times the mass 
of particle 3 (90 0

, 60 0
, 300

). 

(3) All three particles have equal mass (all angles 
are 60°). 

We have examined all three cases and it turns 
out that the first two possibilities will always 
diffract if the strengths of all of the potentials 
involved are finite, but as we will now proceed 
to show, the third possibility will not diffract if 
the strengths of all the potentials are the same. 

IV. EXPLICIT SOLUTION TO A PROBLEM WITH 
FINITE-STRENGTH DELTA-FUNCTION POTENTIALS 

A. Free-Particle Solution 

The Hamiltonian for the internal motion of three­
one dimensional particles of equal mass interacting 
with one another by equal-strength delta-function 
potentials is 

( d2 d
2 

) (1 V3) H = - dx2 + dy2 - go(x) - go 2 x + -2- y 

- go(~x - ~ y). 
We have chosen units so that h = M = 1. If c is 
the "true" strength of the delta-function potentials, 
the equivalent strength is 

-g = V2c. 
The potential diagram for this problem is three- . 

line delta functions intersecting at 60° angles. The 
method of solution will be to trace rays through 
this complex of delta functions and verify that 
there are no boundaries of geometric optics and 
hence no diffraction. 

We again wish to take literally the mathematical 
equivalence of this Hamiltonian to a single particle 
in a two-dimensional space, and return to the 
interpretation of one-dimensional particles after we 
have solved the problem. 

The potential diagram and the rays which result 
are shown in Figs. 4 and 5. Any sequence of reflec­
tions of the incident ray result in one of six rays 
as shown in Fig. 6. As is indicated in Fig. 6, there 
are three possible angles of incidence for these rays 
to strike a potential. These angles are Cp, 60° + cp, 
and 60° - cpo 

The rays transmit or reflect with an amplitude 
which is dependent only on the component of 
momentum perpendicular to the potential surface, 
that is, the sine of the angle of incidence. As is 
usual in problems of this type we do not have to 
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ONE-DIMENSIONAL N-BODY PROBLEMS 627 

consider path-length effects because two nearby 
pieces of the phase front travel the same distance 
between incoming and outgoing wave. 

For a delta-function potential of strength g the 
transmission coefficient may easily be shown to be7 

2ik/g S 
T = -2i-k/-g-'-+"--1 = -S-+-l ' 

Similarly, the reflection coefficient is 

2ik 
S=-· 

g 

-1 -1 
R = 2ik/ g + 1 S + 1 ' 

where k is the component of the wave vector 
perpendicular to the delta-function surface. 

We denote the six possible plane waves 1/;1 through 
1/;6' Their momentum vectors are shown in Fig. 6. 
For convenience we have labeled the potentials a, 
b, and c and numbered the Regions I through VI. 

In Fig. 4 we consider the incoming wave to be 
of Type 6 in Region I. The incoming wave may 
strike potential a first. If it does so it has an 
amplitude T 1 to be transmitted into Region II and 
an amplitude R1 to be reflected into a Type-5 wave 
and stay in Region I. If the plane wave is transmitted 
through potential a, it will then hit potential band 
again be transmitted or reflected, and so on. Notice 
that each ray interacts only three times, once at 
each angle of incidence, before becoming an out­
going ray. This is a consequence of equal-massed 
particles. Figure 5 illustrates the sequence of reflec­
tions we would obtain if the incoming Type-6 plane 
wave in Region I struck potential b first. 

By following rays through the potential complex 

(2) 

(I) 

(5) (6) 

FIG. 5. Ray diagram which applies when the incoming (6) 
hits potential (c) first. 

7 P. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 
II, p. 1644. 

a 

FIG. 6. Representation of the six plane waves which may be 
generated by reflections in the potential complex. 

it is possible to evaluate the amplitude for each 
type of wave (Le., Types 1 through 6) to be present 
in each region. As we have seen in the case of the 
infinite-strength delta functions, the incoming wave 
is bifurcated depending on which potential wall it 
hits first. As we saw in the infinite-delta-function 
case, the two halves of the plane wave must reunite 
to form a complete plane wave' or diffraction will 
result. In this problem the two halves of the plane 
wave must be parallel and fill all of space and be 
equal in magnitude and phase. 

It would seem at first that this problem would 
contain diffraction because the outgoing 2 in Region 
II is made up of the sum of two amplitudes from 
the potential a side and only one amplitude from 
the b side. From the a side we have 

TaR2R1 + RaR2T1 

but 

Thus 

(2ik/g)[sin (600 + cp) - sin (600 
- cp)] 

(2ik/g)sincp = 81' 

TaR2R1 + R3R2T1 

= 82/(83 + 1)(82 + 1)(81 + 1) = R 1T2Ra, 

which is exactly equal to the contribution from the 
b side; thus there is no diffraction. A similar situation 
occurs in Region III and the same relationship 
between 8'S again shows that there is no diffraction. 
In all of the other wedges it is clear that the two 
halves have the same magnitude and phase because 
the amplitudes of the two halves are made up of 
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628 J. B. McGUIRE 

TABLE I. Amplitude of plane waves in the various regions for the free wave solution. 

Wave type 

6 
5 
4 
3 
2 
1 

Wave type 

6 
5 
4 
3 
2 
1 

Region I 

Region IV 

the product of three complex numbers which are 
the same for both halves. 

Since there is no diffraction, the solution to the 
problem may be specified by giving the amplitude 
for each of the six plane waves in each of the six 
regions. These amplitudes are given in Table I. 

B. Interpretation of the Solution in Terms 
of Particles 

Let us now interpret our solution in terms of 
particles. If we have the three particles oriented 
along a line, say in the order 1 2 3 from left to right, 
and we are interested in the scattering of these 
three particles off one another, we see first that 
particle 1 must be traveling to the right faster 
than particle 2, which in turn must be traveling 
to the right faster than particle 3. This is because 
we are interested in a scattering problem and the 
initial state of a scattering problem must be such 
that if the state is projected backwards in time 
there are no collisions. If particle 1 were traveling 
slower than particle 2 and we projected this state 
backwards in time, there would be a collision be­
tween 1 and 2 at some time in the past. This "no 
collision in the past" condition is the condition 
that the incoming plane wave be aimed into a 
wedge in such a way that the tail of the k vector 
not intersect any of the delta-function walls. 

In the potential diagram we recall that the in­
coming plane wave was bifurcated by the two walls 
bounding the Region-I wedge. In terms of particles 
this means that there are two possible first inter­
actions among the three particles, viz., particle 1 
may hit particle 2 or particle 2 may hit particle 3. 

When two particles of equal mass collide in one 
dimension, the amplitude to reflect is the amplitude 
that the particles retain their original order along 

Region II Region III 

Region V Region VI 

the one-dimensional line and the amplitude to 
transmit is the amplitude that they exchange 
positions along the line. Each of the six wedges 
of the potential diagram represent a given order 
of the particles along the line. If Region I is the 
order 1 2 3 from left to right, then Region II must 
be the order 2 1 3 because to get from Region I to 
Region II, particle 1 must transmit through particle 
2 since a is the potential between particles 1 and 2. 

In two-body collisions between particles of equal 
mass no new velocities are generated. That is to say 
that the particles in the incoming state have the 
same velocities as the particles in the outgoing 
state, although the particles may switch velocities 
during the collision. 

What we have demonstrated in our problem is 
that there are no new velocities generated even 
though there are three particles present. If we make 
any small change in our problem, such as letting 
the strength of one of the delta functions change 
or one of the masses be slightly different from the 
other two, the character of the solution will change 
radically due to the presence of diffraction, and 
there will be an infinity of new velocities brought 
into the problem. 

We now see that we have calculated the scattering, 
or S matrix for this problem, which is simply a 
6 X 6 matrix, the elements of which tell how each 
of the six possible initial permutations of the particles 
on a line couple to each of the final six permutations 
of the particles. To specify this 6 X 6 matrix 
entirely, it is sufficient to write down how one 
permutation, say 1 2 3, propagates into the six 
possible outgoing permutations. This is shown in 
Table II. The remaining elements of the 6 X 6 
matrix may be derived by a relabeling of the particles 
in the initial state. 
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TABLE II. Elements of the 8 matrix. 

Wavefunction Amplitude Region 

exp i(klxl + k2X2 + k 3x3) 1 (Incoming Wave) Region I: XI < X2 < Xa 

exp i(k2XI + k 2x2 + k1X3) 
- 1 - SIS3 Region I: XI < X2 < X3 

(SI + 1) (S2 + 1) (Sa + 1) 

S2 
exp i(k2XI + k3X2 + klxa) 

(SI + 1) (S2 + 1) (Sa + 1) 
Region II: X2 < XI < X3 

S2 
exp i(kaxi + k lx2 + k 2xa) 

(SI + 1) (S2 + 1) (S3 + 1) 
Region III: XI < Xa < X2 

exp i(klxl + k2X2 + k2X3) 
- SIS2 

Region IV: X2 < Xa < XI 
(SI + 1) (S2 + 1) (8a + 1) 

exp i(k2XI + k lx2 + kaX3) 
- S2S3 Region V: X3 < XI < X2 

(81 + 1) (82 + 1) (83 + 1) 

SI8283 
exp i(klxl + k2X2 + k2X3) 

(81 + 1) (S2 + 1) (S3 + 1) Region VI: Xa < X2 < XI 

c. Rearranged Solutions 

Although we have seen that there is no diffraction 
in the free wave solution there is still the possibility 
that a particle which is bound in the initial state 
may be free in the final state. 

Suppose we choose particles 1 and 2 to be bound 
in the initial state. The boundary conditions at 
infinity requires that there be no incoming waves 
in particles 1 and 2. The only way this can happen 
is to make both Tl and RI infinite by choosing 
81 = -1 so that the ratio of the amplitudes of the 
incoming to the outgoing waves in particles 1 and 
2 is zero. In the limit as 81 approaches -1, the 
ratio of TI to Rl is unity. 

Let us evaluate the entries in Table I in this 
limit, that is, we set Tl = Rl = 1 and any product 
of amplitudes which does not contain Tl or Rl is 
set equal to zero. This result is given in Table III. 
The amplitudes given in Table III may be verified 
to constitute a solution. 

In order to interpret the entries in Table III 
we return to Fig. 4. The incoming 6 in Region I 
now is at an imaginary angle of incidence with 
respect to potential a. Its amplitudes to either 
transmit or reflect are infinite and equal. This 
transmission and reflection together represent an 
incoming wave, bound in potential a. This incoming 
wave is a decaying exponential in both the positive 
and negative x direction and a propagating ex­
ponential in the y direction. 

The outgoing 2 in Region II makes the same 
imaginary angle to potential b as does the 5 in 
Region I to potential a. This outgoing 2 together 
with the outgoing 1 in Region IV form a bound-

state wavefunction in the direction perpendicular 
to b which is propagating in the direction parallel 
to b. Notice that all of the intermediate states , 
such as the two in Region I tend to zero exponentially 
at infinity in the region in which they exist. 

There are three outgoing waves, a bound state in 
potential b propagating up to the right parallel to 
potential b, a bound state in potential c propagating 
up to the left parallel to c, and a bound state in 
potential a propagating down parallel to potential a. 

The interpretation in terms of particles may be 
made without difficulty since we know that potential 
b, for example, is the potential between particles 
1 and 3 and if the outgoing wave is bound in po­
tential b, particles 1 and 3 must be bound together 

TABLE III. Amplitudes of waves in various regions for the 
rearranged solution. 

Wave 
Type Region I Region II Region III 

6 1 
5 1 T2 
4 R2T3 + RaR2 
3 R2Ra + R2Ta R2 
2 R2 R2Ra + R2T3 
1 

Wave 
Type Region IV Region V Region VI 

6 T2 TaT2 
5 TaT2 
4 
3 
2 
1 T2Ra 
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and particle 2 free. This would represent a re­
arrangement of our initial state which had particles 
1 and 2 bound and particle 3 free. 

We follow this line of reasoning and conclude 
that the amplitude to leave the vertex bound in 
potential a is the amplitude for no rearrangement 
to occur. This amplitude is given from Table III, 

TaT
2 = Ca ~ I)C2 ~ 1) = :: ~ ~. 

The amplitude to go up to the right along potential 
b and the amplitude to go up to the left along 
potential c are interpreted as the amplitudes for 
the particles 1 and 2, respectively, to have been 
replaced by the incoming particle 3. They are 

since 81 = -1; 

H2i(k: - il)i] sin 'P = -1, 

. +ig 
Sill 'P = 2(k! _ ig2)t , 

1 2ik sin (600 + 'P) v'3 ik. 
82 = g = g - 2' 

v'3 ik. + !. 
g 2 

2ik sin (600 
- 'P) 

8a = = g 

The corresponding probabilities are: 
Probability that 3 replaces 1 = Probability that 

3 replaces 2, 

(
3ky2 9)-1 
7+4 . 

P b bili't f t (3k;/ g2 + 1) 
ro a y 0 no rearrangemen = (3k;/ l + .£.) . 

Note the following results of this rearrangement 
solution: 

(1) There is no ionization, that is there is no 
amplitude for the final state of the system to be 
three free particles. This is intimately connected 
with the lack of diffraction in the free wave solu­
tions. 

(2) There is no reflection. If some particle is 
incident from the left in the initial state, some 
particle will be moving to the right in the final 
state with the same velocity as the initially incident 
particle. 

(3) Even if the incident particle is moving toward 
the bound pair with an infinitesimal velocity, it 
has a probability of t to transmit through the 
bound pair. 

D. The Bound State of Three Particles 

In addition to the free wave and rearranged 
solutions there is one totally bound state of the 
three particles. The condition for this state is that 
there be no incoming waves in any of the particles. 
This is achieved by imposing the further condition 
that 8a = -Ion the rearranged solution. All of 
the outgoing waves then have equal amplitude. 
Their k vectors are pure imaginary and are pointed 
along the bisectors of the angles of the six wedges. 
Apart from the normalization factor, this wave­
function may be written as 

if! = n exp {- V2 g[lXl - x21 

+ IX2 - xal + IXI - xalJ}, 
where Xl, X2, Xa are the positions of the three particles 
along the one-dimensional line. This wavefunction 
is totally symmetric to the interchange of any pair 
of particles and its energy is E = - !l. 

All of the properties of the outgoing wavefunction 
for the rearranged state and the bound state may 
be deduced directly from the S matrix by simply 
considering the behavior of the S matrix at the 
values of k for which it has a pole when it is an­
alytically continued to complex or imaginary k. 
The discussion in this section was carried out in 
terms of the wavefunction for purposes of clarity, 
henceforth we shall discuss rearrangements and 
bound states from the analytically continued S 
matrix.s 

V. N-PARTICLE SOLUTION 

In this section we will show that the corresponding 
N-particle problem is exactly soluble, that is, the 
problem of an arbitrary number of particles of 
equal mass all interacting with one another via 
equal-strength delta-function potentials. 

The Hamiltonian is 

li,2 N d2 N 

H = -2M f-1 dx~ + C ~j!; a(x. - Xi)' 

We will continue to use the units 

Ii, = M = 1, v'2c = -g. ----
8 We should note here that there is a universal peculiarity 

bred into this problem which is retained in all of the problems 
we shall discuss subsequently. This peculiarity is that there are 
no bound-state solutions where any two particles are moving 
with zero relative velocity. From an inspection of the S matrix 
it would appear that the condition 81 = -1, 8a = 0, 82 = -1 
is also a state which has no incoming waves. If one applies 
this condition and looks at the wavefunction, one finds that 
it does not satisfy the boundary conditions on the delta­
function surfaces. One can construct a wavefunction which 
does satisfy the boundary conditions on the delta-function 
surfaces by a careful limiting l?rocess, but this wavefunction 
increases exponentially at infinlty in certain domains. 
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It is apparently quite impossible to continue to 
think of the N -particle problem as an equivalent 
one-particle problem in a multidimensional space, 
for the dimensionality of this equivalent space is 
N - 1. An alternative point of view exists, however, 
in which the difficulty of increasing dimensionality 
may be avoided. 

Suppose we consider the space-time plot of a 
two-particle problem. The particles enter at some 
momentum which dictates the slope of the line in 
space-time. When the two particles collide they 
either transmit or reflect, but since no new velocities 
are generated, the space-time plot looks as shown 
in Fig. 7. If particle 1 started on the left and particle 
2 on the right, then the transmission coefficient is 
the amplitude for particle 1 to come out on the right 
and particle 2 to come out on the left. The reflection 
coefficient is the amplitude for particle 1 to come out 
on the left and particle 2 to come out on the right. 

We should remark here that there is no intention 
of changing our formulation of the many-particle 
problem from the stationary-state type to that of 
space-time. We intend only to argue that by 
interpreting the space-time plots we may derive 
all of the information which would be available in 
a ray tracing argument such as we used in Sec. IV. 

N ow let us consider the three-particle problem. 
There are two possible topologically different three­
particle space-time diagrams which are again shown 
in Fig. 7. These two diagrams correspond exactly 
to the bifurcation of the incoming plane wave with 
which we dealt in the previous section. If the parti­
cles are ordered 1 2 3 from left to right, then the 
diagram on the left is the diagram which occurs 
when particle 1 strikes particle 2 first and the 
diagram on the right is the diagram which occurs 
when particle 2 strikes particle 3 first. It is now 
obvious that there is one collision at each of the 
three possible relative velocities and that there are 
exactly three collisions between incoming and out-

h II • going waves. As a matter of fact even t e mIrac-
ulous" property that 81 + 8a = 82 is now evident 
because 

thus 

81 = v'2 i(kl - k2)/g, 

8a = v'2 i(k2 - ka)/g; 

81 + 8a = v'2 i(kl - k3)/g = 82' 

What we have shown in the previous section is 
that, as far as the outgoing waves are concerned, 
it does not matter which of the two possible diagrams 
is used, for both give exactly the same result. 

x 

x 
cal 

(b) 

x 

FIG. 7. Space-time plots for (a) two- and (b) three-particle 
problems. 

If we were to change one of the particle masses 
or one of the delta-function strengths, the two 
diagrams would not give the same result and 
diffraction would occur. 

In order to calculate the amplitude of the outgoing 
. t TII+l d RII+1 waves, let us Invent two opera ors ij an ij 

which are to operate on some permutation of 
particles along the line. The indices II + 1 label 
the position of an adjacent pair of particles which 
are interacting, and i and j label the k vectors with 
which the particles are interacting. The operator T 
interchanges the particle in the lth slot and the 
particle in the l + 1 slot with the amplitude tij where 

t .. = v'2 i(k i - kj)/g 8ij 
'1 v'2 i(k i - k;)/g + 1 8,; + 1 

The operator R leaves the same particles in the 
land l + 1 slot, with the amplitude Ti; where 

Tij = -1/(8ij + 1). 

We denote the order of the particles by (1 3 2) 
meaning that particle 1 is in the first slot (that is, 
it is to the left of all of the other particles), particle 3 
is in the second slot, and particle 2 is in the last 
slot. Thus, for example 

T:~(132) = [812/(812 + 1)](312), 

R:~(132) = [-1/(812 + 1)](132). 

We use the three-particle diagrams of Fig. 7 
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x 

FIG. 8. Four-particle space-time plot. 

to tell us in what order these operators work. For 
example the three-particle diagram on the left in 
Fig. 7 implies the order 

(T~: + R~:)(T~= + R~=)(T~: + R~=), 
which operates on some linear combination of the 
initial permutations of the three particles. 

The three-particle diagram on the right in Fig. 7 
implies the order 

(T~: + R~D(Tg + R!:)(T~: + R~:). 
It is easily verified that these operators on any 
permutation of the particles give exactly the same 
result. 

If we go on to four particles it will require fourteen 
diagrams to fill all space, and there will be six 
operator products going from incoming to outgoing 
states. We will now show that the outgoing waves 
are the same from each of the possible diagrams. 

In order to do this let us start with a typical 
four-particle diagram such as the one shown in 
Fig. 8. This diagram implies the sequence of six 
operators 

where 

Suppose we now imagine moving the bottom line, 

exactly the same result as the first because all we 
have done is change the order of operators and the 
diagram in exactly the way we changed them in 
the three-body problem. If we continue to move 
the k4 line up the page, another new sequence will 
be generated when the k4 line reaches the position 
indicated by the second dotted line. This sequence 
involves an interchange of the operators O!~ and 
0:: which commute because they have no slot in 
common. Thus this diagram gives exactly the same 
result as do the first two. 

A continuation of this argument will show that 
every possible diagram contributes exactly the same 
outgoing waves. The argument does not depend on 
the number of particles, for all that is ever required 
is to move lines across intersections or to move 
intersections past commuting intersections. In order 
to show there is no diffraction, one must show that 
the amplitudes for every intermediate state which 
may be reached by more than one route are equal. 
The argument for these states proceeds in exactly 
the same way, and requires no more than the opera­
tors discussed above. 

VI. N-PARTICLE CALCULATIONS 

A. The Three-particle Problem 

We are now in a position to calculate amplitudes 
for various N-particle processes with relative ease. 
We could now draw some convenient sequence 
diagram with N k lines, write the appropriate op­
erator sequence, and generate the 8 matrix by the 
operator rules of the preceding section. We know 
that we may pick any sequence whatever to generate 
the 8 matrix, for all sequences yield the same 
result. If it is desired to study scatterings in which 
particles are bound to one another we simply take 
ratios of elements of the 8 matrix where the elements 
are evaluated at the poles which correspond to the 
desired bound state. 

In order to make the method more clear, let us 
redo the three-particle problem by the methods of 
Sec. V. 

Let us evaluate the three-particle 8 matrix by 
using the space-time sequence diagram on the left 
in Fig. 7. We will assume that the incoming wave 
has the particles in the order (123) from left to right. 
Now 

that is, the k4 line, up the page. We generate a 8(123) = (T~~ + R~~)(T~: + R~:)(Tg + Rg)(123) 
new sequence when this line passes the collision 12 12 23 23 

. d' d h d d 1" = (T23 + R2S)(T1S + R1S)[tI2(213) + T 12(123)] between kl and k2 III lcate by t e otte me m 
Fig. 8. This second sequence of collisions gives = (T~~ + R~~)[tlSt12(231) + T1s t12(213) 
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+ t1sr12(132) + r13r12(123)] 

= (t2Sr13t12 + r12rlSr12)(123) 

+ (r2Srlst12 + t2srlSr12)(213) + (r2stlsr12)(132) 

+ r2atlat12(213) + t2atlsrli312) + bt1at12(321), 

if we let 

The elements above are exactly the same as the 
elements of the S matrix as given in Table II. 

Of course, the other sequence diagram of Fig. 7 
gives the same result. As we have seen previously, 
all of the scattering amplitudes for all possible 
processes as well as the bound-state energies may 
be calculated from analytic continuation of the 
S matrix. 

The evaluation of S matrices for more particles 
is a straightforward but tedious process. We will 
consider here some processes whose amplitudes may 
be calculated without calculating the entire S 
matrix. 

B. Four-Particle Processes 

Suppose we consider the scattering of a pair of 
bound particles incident on a second bound pair 
of particles. We will denote the incoming state as 

1(12)(34» 

where the (12) indicates that particles one and two 
are bound and the order inside the "ket' , indicates 
the order along the one dimension from left to right. 

Let us first calculate the amplitude for the bound 
aggregates to pass through one another, that is, 
for the outgoing state to be 

«34)(12) I. 
We know that the wavefunction is symmetric 

to the interchange of particles 1 and 2, for the 
single bound-state wavefunction of two particles 
bound by a delta-function potential is symmetric. 
If one of the particles has momentum kl and the 
other has momentum k2 we know that 

V2 i(k1 - k 2)/g = -1, 

for this is the condition that the two particles be 
bound. Similarly the condition 

'\1'2" i(ka - k4)/g = -1 

is the condition that particles 3 and 4 be bound. Let 

V2 i(k2 - ka)/ g = 8. 

If the bound aggregate (12) is to pass through 

(34), clearly both particles 1 and 2 must transmit 
through particles 3 and 4. The amplitude for 
particle 2 to transmit through particle 3 is 

(32 I 23) = V2 i(k2 - ka)/g 8 
V2 i(k2 - ka) / g + 1 = 8 + t" 

The amplitude for 2 to transmit through 4 is 

(42 I 24) = (8 - 1)/8. 

Similarly, 

(31 113) = (8 - 1)/8, 

(41 114) = (8 - 2)/(8 - 1). 

The amplitude for all four of these events is the 
product of their respective amplitudes and is the 
amplitude for the aggregate (12) to pass through 
the aggregate (34). Thus, 

«34)(12) I (12)(34» = (8 - 1)(8 - 2)/8(8 + 1). 

Let us write this amplitude in terms of the energy 
in the center-of-mass system. By use of the formula 
in the Appendix which relates the energy to the 
8 variables we can write 

-4Etot/ l = [8 - lY + 1. 

The factor + 1 on the right-hand side is just 
the binding energy of the two pairs of particles, 
and in this problem it is more convenient to rep­
resent the solution in terms of the kinetic energy 
of incidence of the bound aggregates in their center 
of mass; thus if we remove the binding energy term 

-4E/l = [8 - 1]2, 

8 = 1 + 2iE!/g. 

The amplitude for transmission is then 

(2iEi/g)(2iEl/g - 1) 
«34)(12) I (12)(34» = (2iEt / g + 1)(2 + 2iEt/ g)' 

and the probability of transmission is 

1«34)(12) I (12)(34»1
2 = E/;!~ 1 

So the probability for the (12) aggregate to pass 
through the (34) aggregate is zero at zero energy 
and monotonically increasing to unity at infinite 
energy. 

We have several other possibilities for outgoing 
states. It is possible for one of the particles of the 
bound aggregate (12) to switch places with one of 
the bound particles of the aggregate (34). One way 
this could happen is for the first interaction to be a 
reflection and for the last three interactions to be 
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transmissions. Thus we have the amplitude 

«13)(24) 1 (12)(34» = (~ - 1)(8 - 2)/82(8 + 1), 

which yields the probability 

2 4E/g2 

1«13)(24) 1 (12)(34»1 = (4E/g2 + 1)(4E/g2 + 4) 

This probability is zero both at zero and at 
infinite energy. It is a "resonance" probability 
having a maximum at E = tl where the probability 
of the production of the «13)(24) 1 state is t. 

There is no easy way to calculate the amplitude 
for the reflection of the (12) aggragate off the (34) 
aggregate; one must return to the sequence diagrams 
and analyze the S matrix at the appropriate poles. 
We will simply state the result 

«12)(34) 1 (12)(34» = 2(8 - 2)/82(8 + 1), 

1«12)(34) 1 (12)(34»1
2 

= (4E/l + 1)~4E/l + 4) 

C. The Many-Particle Bound State 

From the four-particle amplitudes worked out 
above, we can see that there is a four-particle 
bound state. Every element of the S matrix is 
proportional to 1/[8(8 + 1)]; thus if we let 8 = -1 
there are only outgoing waves, and we will have 
a bound state. It would also appear that 8 = 0 
would give a bound state, but as we have seen in 
the three-particle case there are no solutions where 
two particles have zero relative velocity. 

The condition for the four-particle bound state is 

V2 i(k1 - k2) V2 i(k2 - k3) V2 i(k3 - k4) 

g g g 

= -1. 

One may show using the many-particle S matrix 
that the condition for an N-particle bound state is 

V2 i(k; - kj+l)/g = -1 = 8j 

for all j. 
Using this condition we may evaluate the energy 

of the N-particle bound state using the formula 
derived in the Appendix which relates k, - k'+l 
to the internal energy, 

E = D- E E 1$1 
2 N-l 1 [.. J2 

4 .. -1 n(n + 1) 1-1 

= --h(g2)N(N2 - 1). 

There is no saturation; the energy decreases as 
N 3

• The wavefunction is symmetric to the inter­
change of any pair of particles and the average 

density of particles in the vicinity of the center 
of mass is of the order of Ng. 

D. Scattering of One-Particle by N - 1 Bound 
Particles 

As a final example of an N-body calculation let 
us consider the scattering of one free particle by 
N - 1 bound particles. By the usual method the 
relation between 8 and kinetic energy in the center 
of mass is found to be 

8 _ 2iNiEi + N - 2 _ V2 i(k1 - k 2) 

- g(N - I)I 2 - g 

The amplitude for the incident particle to pass 
through the bound aggregate of N - 1 particles 
is the product of its amplitude to pass through each 
particle individually, and is 

«2 ... N)(I) 1 (1)(2 ... N) 

= (_8 )(~)(~) ... [8 - (N - 2)J 
8 + 1 8 8 - 1 8 - (N - 3) 

8 - (N - 2) 
8+1 

2i(NE)I/g(N - I)' - t(N - 2) 
2i(NE)I/ g(N - 1)1 + iN 

The amplitude for the incident particle to replace 
one of the bound particles is the same for all bound 
particles, and is 

«13 ... N)(2) 1 (1)(2 ... N) 

= «124 ... N)(3) 1 (1)(2 ... N) 

= (-=L)(~) ... 8 - (N - 2) 
8 + 1 8 8 - (N - 3) 

[ 
-1 Jrg't!v(~~i)l - t(N - 2)J 

= 2i(NE)I +!.N 2i(NE)t + !.(N _ 2) . 
g(N - l)t 2 g(N - 1) 2 

We noted previously that one of the peculiar 
things about the three-particle solution was that 
the amplitude for the incident particle to transmit 
through the bound aggregate was nonzero even at 
zero energy. Here we see that this transmission 
amplitude is always nonzero for one particle incident 
on N - 1 particles, and in fact the amplitude to 
transmit approaches 1 for infinite N. Thus in the 
limit of large N nothing happens to the incident 
particle; it simply passes through this extremely 
dense bound aggregate as though it were not there. 

VII. SUMMARY 

In the Introduction we stated that one of our 
objectives in studying exactly soluble N-body prob-
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lems was the illustration of physical effects. We 
have succeeded in this objective to some degree, 
for we have seen a number of the possible effects 
outlined in the Introduction. In the infinite-strength 
delta-function case we have seen particles redis­
tribute their energy among the particles in a way 
which cannot be understood by a sequence of the 
two-body interactions. For infinite-strength delta 
functions we have illustrated the possibility of 
rearrangement of particles and the existence of 
N-particle bound states. 

On the other hand we have not been able to 
illustrate any inelastic processes which involve dis­
association or recombination of particles out of or 
into bound states. We have, however, learned to 
associate these processes with some generalization 
of diffraction processes in a multidimensional space. 
This multidimensional diffraction must be dealt 
with in any successful approximation method so 
at least in this sense we have provided some insight 
into the approximation methods which might be 
used in more physical problems. Moreover, we now 
have an exactly soluble problem involving a re­
arrangement of particles which can be used to check 
the existing approximation methods, and perhaps 
lead to a better understanding of the lack of con­
vergence which seems to be implicit in problems 
of this type. II 

Scientific Research, Physical Sciences Directorate, 
is also gratefully acknowledged. 

APPENDIX. DISCUSSION OF COORDINATE SYSTEMS 
FOR N-BODY PROBLEMS 

Consider an N -b ody Hamiltonian of the form 

h2 N 1 82 N 

H = --2 L M -;;2 + L L V;;(Xi - Xi)' 
i-I i uX, i>i 

We will take the X, to be one-dimensional vari­
ables, but the results we derive will be independent 
of dimensionality and may be extended to more 
dimensions by simply substituting the vector 
quantities V"~ for 82/8x~ and Xi for Xi' 

We wish to make a change of variables which 
will allow us to separate out the center of mass of 
the entire system. In addition we will find that a 
more unified view of N-body problems is attained 
if we pick a "rationalized" coordinate system so 
that the second derivative terms in the new variables 
all have the same coefficient. The following has been 
shown to be such a coordinate systemll

•
12

; 

(M IM 2)i ( ) 
Zl = (MI + M2)1 Xl - X2 , 

Ml(M I + M2)i (MIXI + M2X2 ) 
(MI + M2 + Ma)t MI + M2 - Xa , 

Finally one must wonder about the statistical Zn 

mechanics of a one-dimensional system of particles 

M!+1(t MiY t MiX, 
.-1 .!.:i-::..!I,--__ Xn+l 

(~MiY ~M, 
n < N, 

of equal mass which interact through equal-strength 
delta-function potentials. If the particles were bosons 
or distinguishable particles and the potentials attrac­
tive, the problem would make no sense, for the 
system would collapse into the N-particle bound 
state independent of temperature. The case of 
repulsive bosons has recently been worked out by 
Lieblo who, independent of this work, constructed 
the totally symmetric wavefunction for an arbitrary 
number of particles of equal mass interacting via 
finite-strength, repulsive delta-function potentials. 
The situation with attractive or repulsive fermions 
remains open and should prove to be an interesting 
area of further research. 
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t M,x,/(t Mi)i. 
I-I I-I 

Pick the first new coordinate to be the relative 
coordinate between any two particles multiplied by 
the square root of the reduced mass of those two 
particles. Pick the second new coordinate to be 
the coordinate of a third particle relative to the 
center of mass of the first two multiplied by the 
square root of the reduced mass of particle three 
and the sum of the masses of the first two, etc. 
The last coordinate is the center of mass of the 
whole system multiplied by the square root of the 
sum of the masses. 

We can verify that this transformation has the 
property that the coefficients of the new second­
derivative terms are equal by observing that the 
transformation between Z and X can be written as 
an orthogonal matrix times a diagonal matrix, where 
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the elements of the diagonal matrix are the square 
roots of the masses of the particles. That is, 

z = UM'x, 
where 

and 

Un, = (M!+I)(M!)/(~ Mi)'(t Mi)~ N > n ~ i, ,-1 ,-1 

Unn+1 = -[ (~Mil / (~Mit, N > n, 

UN, = M!/(t Mil, 
Un, = 0, i>n+l. 

The operator a/ax transforms by the rule 

ajax = (M'U') ajaz. 
Thus the quadratic form 

(1.)' (Mrl 1. = :£.l... a
2

2 ax ax .-1 M. ax, 

= (~)' UM'(MrIM'U' ~ = :£ a
2

2 • az az i-I az, 
To find the arguments of the potentials we invert 

the transformation between x and z for form x, - Xi. 

The result is 

The factor of the square root of the reduced mass 
is introduced so that the sum of the squares of the 
coefficients of the z's add up to unity. These co­
efficients may be looked at as the "direction cosines" 
of the potential in the multidimensional space. 

Another result which we shall find useful is the 
transformation law between momenta in the two 
systems. This transformation is 

ajaz = [U(Mlrl] ajax, 
p. = U(M1rIpx, 

which leads to 

Mi n 

p .. = (n+1 )tn(+~ )' t; (Px ; - Pxn+,), 
EMi EM. n < N. 
... -1 n-l 

The total energy of internal motion is 

We shall need to calculate this energy for the case 
when all of the masses are equal. For convenience 
we set h = 1 and M = 1. This leads to 

1 N-I [ 1 n J2 
E = 2?; n'(n + 1)1 ~ (px; - Pxn+') , 

which can be written 

1 N-I 1 [n J2 E=-E Eik. 
2 n-I n(n + 1) i-I • , 

where 
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