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Solution of the SchrOdinger equation for a particle in an equilateral triangle 
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The complete solution for the quantum -mechanical problem of a particle in an equilateral triangle 
is derived. By use of projection operators, eigenfunctions belonging explicitly to each of the 
irreducible representations of the symmetry group Cw are constructed. The most natural 
definition of the quantum numbers p and q includes not only integers but also nonintegers of the 
class! and ~ modulo 1. Some relevant features relating to symmetry and degeneracy are also 
discussed. 

I. INTRODUCTION 

The two-dimensional SchrOdinger equation for a parti­
cle confined within an equilateral triangle has been consid­
ered by several authors. l

-4 Mathews and WalkerI derived a 
solution in the form of a double Fourier series after generat­
ing a periodic lattice by successive reflections and rotations 
of the triangle. Krishnamurthy et al.2 applied an ingenious 
transformation of the solution for three fermions in a one­
dimensional segment into that for a single particle in a trian­
gle. Shaw3 reduced the SchrOdinger equation to a quasi-one­
dimensional form involving a complex coordinate 
Z = x + iy. However, he obtained only those eigenstates 
transforming as theA 1 andA 2 representations of the symme­
try group Cw ' The corresponding problem in a classical 
context was solved by Lame4 a very long time ago. 

The various solutions of the problem result in functional 
forms and energy expressions of rather different appearance. 
In common with the problem of the isosceles right triangle, 
recently solved by one of us,s the Schrodinger equation for 
the equilateral triangle is not soluble by separation of varia­
bles. Recently, analogous nonseparable solutions for tetra­
hedral boxes also have been obtained. 2,6 

II. METHOD OF SOLUTION 

We seek solutions of the SchrOdinger equation 

-(::J [::2 + :;] ~(x, y) = EW(x, y), (1) 

such that ~(x ,y) = 0 on the three sides of an equilateral tri­
angle of side a situated as shown in Fig. 1 (a). It is convenient 
to introduce the altitude of the triangle, given by 

A = (./3/2)a. The three boundary conditions thus require 
that 

f
=O' 

~(x, y) = 0, when y = ./3x, 

= ./3(a - x) = 2A - ./3x. 

(2) 

It will be expedient to introduce three auxiliary varia­
bles 

u = (217/A lv, v = (217/A)( - y/2 + ./3x/2), 
(3) 

w = (217/A)( - y/2 - ./3x/2) + 217. 

These are proportional to the perpendicular distances from 
an interior point to the three sides of the triangle, as shown in 
Fig. l(b). The sum of these perpendiculars equals the altitude 
of the triangle and thus 

u +v + W= 217. (4) 

The boundary conditions (2) now assume the more symmet­
rical form 

{

u = 0, v = 217 - W, 

~ = 0, when v = 0, W = 217 - U, 

W = 0, u = 217 - V. 

(5) 

The equilateral triangle problem is invariant under the 
point group Cw ' Equivalently, the sides (or vertices) can be 
permuted according to the symmetric group S3' isomorphic 
with C3V ' Let the variables u,v,w transform under S3 as fol­
lows: 

(6) 

Thus the vector (u,v,w) generates the following 3 X 3 reduc­
ible representation ofS3 or C3V : 

Cl ~G ~ ~). u,~G ~ ~). 

u,~G ! ~} u,~G ~ D· 

(7) 

Boundary conditions aside, the free-particle Schro­
dinger equation (1) admits solutions of the form 
l(c1x + c2 y), in which I(z) is a harmonic function such as 
sin z, cos z, or exp( ± iz). With the use of Eqs. (3), let this 
function be expressed in the form I(pu - qv), in which p 
and q are constants. 
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FIG. 1. (a) The coordinate system for an equilateral triangle showing 
boundary conditions. (b) The auxiliary variables u,v,w. 

III. A1 SOLUTIONS 

We shall next construct Cw-symmetry adapted func­
tions by application of projection operators. Recall that C3V 

admits of three irreducible representations: A] and A 2, which 
are nondegenerate, and E, which is doubly degenerate. The 
A I projection operator 

9(All = E + C3 + C~ + 0'1 + 0'2 + 0'3' (8) 

applied to the "basis function" f(pu - qv), with the use of 
(6), gives 

'l'p,q(A]) = f(pu - qv) + f(pv - qw) + f(pw - quI 

+ f(pv - quI + f(pw - qv) + f(pu - qw). 

(9) 

It is readily shown that the boundary conditions (5) can be 
fulfilled only if f = sin andp,q are integers. We find further 
that 

'I' q,p = - 'I' p,q , 

lfI_p,_q = - 'l'p,q, 

'l'p+q,_p = - 'l'p,q' 

(10) 

Thus, without loss of generality, the quantum numbers p,q 
can be restricted such that p > q>O, with p and q integral. 
The eigenfunctions (9) can be reduced to more compact tri­
gonometric forms as follows: 

'l'p,q(A I ) = cos[q~17'x/A ]sin[(2p + q)11J'/A ] 

- cos [ P~17'x/ A ] sin [(2q + p)11J' / A ] 

- cos[(p + q)~17'x/A ]sin[(p - q)17'y/A ], 

q = 0,1,2, ... , P = q + 1,q + 2,... . (11) 

Specifically, for q = 0, 

'l'p,o(A I ) = sin(2p11J'/A) - 2 sin(p11J'/A) 

xcos(p~17'x/A), p = 1,2,3... . (12) 

Note that the above functions are not normalized. These 
agree with the specific cases listed by Shaw.3 The energy 
eigenvalues corresponding to (11) and (12) are given by 

Ep,q = (p2 + pq + q2)Eo, 
(13) 

Eo == h 2/2mA 2 = E1,o' 
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IV. AI SOLUTIONS 

For the A2 representations, the projection operator 

9(A2) = E + C3 + C~ - 0'1 - 0'2 - 0'3 (14) 

applied to f(pu - qv) results in 

'l'p,q(A2) = f(pu - qv) + f(pv - qw) + f(pw - quI 

-/(pv - quI - f(pw - qv) -/(pu - qw). 
(IS) 

These fulfill the boundary conditions with f = cos and, 
again, for integralp,q. In analogy with (10), we find for theA2 

functions, 

'I' q,p = - 'I' p,q' 

'I' _»,_q = 'l'p,q, 

'l'p+q,_q = - 'l'p,q' 

(16) 

The last relation shows that 'I' p,q = 0 if q = O. Otherwise the 
same spectrum as theA 1 functions is obtained. with p > q > 0, 
p and q integral. The A2 eigenfunctions in trigonometric 
form analogous to (11) are given by 

'l'p,q(A2) = sin [qv'317'x/A ] sin [(2p + q)11J'/A ] 

- sin [ ~1TX/A ]sin[(2q + p)11J'/A ] 

+ sin[(p + q)v'31TX/A ]sin[(p - q)11J'/A ], 

q = 1,2,3, ... , P = q + l,q + 2, .... 

(17) 

The eigenvalues are again given by (13), except that q = 0 is 
missing. Remarkably, every A2 eigenstate is degenerate with 
an A eigenstate carrying the same quantum numbers. The 

1 • 
only nondegenerate eigenstates are theA I with q = 0. A SlDl-

Har situation arises for a particle in a square, as discussed by 
Shaw,3 in which there occur degenerate pairs of Al + B 1 spe­
cies and again of A2 + B2 species. 

V. E SOLUTIONS 

Finally, for the E representation, we make use of the 
projection operator 

9(E)=E+EC3+E*C~ -0'19f -E0'29f -E*0'39f, 
(18) 

where E = exp(217'i/3) and 9f represents the operation of 
complex conjugation. Applying (18) to /(pu - qv) we ob­
tain 

'I' (E) = /(pu - qv) + E/(pV - qw) p,q 

+ E* f(pw - quI - f*(pv - quI 

- E/*(pW - qv) - E* f*(pu - qw). (19) 

The boundary conditions are satisfied with the function 
f(z) = exp( + ,z), but now with p,q = n +! (n = integer). 
The complex conjugate of (19) gives the partner in this de­
generate representation. One can alternatively apply (18) 
with E = exp( - 217';/3). This generates a second class of E 
eigenfunctions (19) with p,q = n + ~, The following relation­
ships among the E functions can be demonstrated: 

W. Li and S. M. Blinder 2785 
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FIG. 2. The graphical representation of some lower eigenstates (p,q) of each 
symmetry type. For visual simplicity, only the sign (+ or -) of the wave 
function is plotted. 

'II q,p = - 'II p,q' 

'II _ p, _ q = '11;+ 1/3,q + 1/3 , (20) 

'lip + q, _p = - '11;+ 1/3,q+ 1/3' 

Thus, E states can be labeled by the quantum numbers 
q = !,M,i, ... , p = q + l,q + 2, .... The real and imaginary 
parts of'll p,q (E) turn out to have the same forms as (17) and 
(11), respectively, but withp,q now equal to! or j modulo 1, 
viz., 

Re 'IIp,q(E) = 'IIp,q(Az), 

1m 'II p,q (E) = 'II p,q (A ii, 
q=M,M, ... , p=q+ l,q+2, .... 

VI. SUMMARY 

(21) 

The Schrodinger equation (1) subject to the boundary 
conditions (2) has solutions 'IIp,q' The Al eigenfunctions are 
given by Eq. (9) or Eq. (11) [Eq. (12) if q = 0], the Az eigen­
functions by Eq. (15) or Eq. (17), and the E eigenfunctions by 
Eq. (19) or Eq. (21). Figure 2 represents some of the lower­
energy eigenfunctions of each symmetry species. For visual 
simplicity, only the sign of the wave function (+ or -) is 
plotted. The energy eigenvalues are given by the formula 
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Ep,q = (pZ + pq + q2)Eo, 

{

0,1,2, ... , for A J, 

q = 1,2,3, ... , for A z, 

~,j.~.j, ... , for E, 

p=q+ l,q+2 •.... 

As discussed in Refs. 3 and 7, systems of high symmetry 
often exhibit "accidental" degeneracies beyond those im­
plied by the purely geometrical symmetry of the Hamilton­
ian. Thus, in the equilateral triangle problem. E = 49 (in 
units of Eo) represents a threefold-degenerate level com­
pounded ofanA J state with aAJ-Az pair. corresponding to 
the (p,q) = (7,0) and (5.3). This is the first of an infinite num­
ber of such combinations. The first fourfold degeneracy 
from two coinciding AJ-Az pairs occurs for E = 91. with 
(p,q) = (6.5) and (9.1). We eventually encounter a sixfold de­
generacy atE = 1519 with states (23.22). (33.10). (35.7) and 
an eightfold degeneracy at E = 1729 with states (25.23). 
(32.15). (37,8). (40,3). Degeneracies also arise from coinci­
dent E levels. Thus E = 3D! is fourfold degenerate with 
states (.y.J) and PI.!); E = 212j is sixfold degenerate with 
states (Jf.V), Pi,.y) and (~M). Such nongeometrical degener­
acies can often be enumerated by applying results from num­
ber theory. For example, the number of integer combina­
tions (m.n) such that mZ + mn + nZ equals a particular 
integer is calculable.8 

An amusing correspondence can be drawn between 
equilateral triangle eigenstates and families of leptons and 
quarks. The doubly degenerate levels with the quantum 
numbers n + 1 and n + j are quite suggestive of pairs of 
quarks (right and left handed) with charge + l and - j, 
respectively. Similarly. the degenerate AJ.Az states might 
correspond to pairs of (right and left) leptons such as elec­
trons or muons. Finally. the nondegenerateAJ's with q = ° 
suggest left-handed neutrinos (the right-handed partners be­
ing nonexistent). 
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