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If a momentum measurement is made for a particle in a 
one-dimensional box in the energy eigenstate Yn, what 
outcomes are possible? Within the box, the eigenfunction 
Y, is a standing wave, obtained as  a superposition of two 
traveling waves, one with momentum 

and the other with momentum 

where h is Plenck's constant; n is the quantum numher for 
the enerev eipenstnte'l'.; n is the lenmh ofthe box; and the 
particle Tas ;ass m. -' 

- 

Within the box. the wave function Y. is an eiaenfunction - 
of the kinetic-energy operator, with eigenvalue 

Based on these observations, i t  is tempting to conclude 
that a momentum measurement should yield one of two 
.,slues, p, or -p,, but this is not the quantum-mechanical 
prediction! 

In  this paper, we focus on the momentum distributions 
for systems in energy eigenstates of the particle-in-a-box 
Hamiltonian, a widely used quantum-mechanical model 
(1-9). We obtain simole. ex~licit  ex~ressions for the Drab- . .  - 
abilities of observing an arbitrary momentum p for a sys- 
tem in state Y. and demonstrate the nonclassical features 
of the momentum distribution. For the lowest energy 
eigenstate, with n = 1, the momentum distribution peaks 
a t p  = 0, rather than at  the values W 2 a  predicted from E,. 
With an increase in quantum number from n = 1 to n = 2, 
the distribution bifnrca ..es, and the maxima for the nth 
level approach fp, a s  n increases, thus illustrating the 
transition from quanta1 to classical behavior. 

Expression for the Momentum Wave Function 
We consider a particle of mass m in a one-dimensional 

box of length a,  described by the time-independent 
Schrodinger equation (1-9). 

for the wave function Wx). 
The normalized energy eigenfunctions are given by (1-9) 
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where n = 1, 2, 3, ..., and the quantized energy levels ob- 
tained naturally from the boundary conditions 

are (1-9) 

From a classical standpoint, the particle is expected to 
move back and forth in the box a t  constant speed, with mo- 
mentum values p, = m. In contrast, quantum me- 
chanically, the energy eigenstate YJx) is not an eigenstate 
of the momentum operator because 

This means that the outcome of a momentum measure- 
ment for the particle cannot be predicted with certainty. 

Because 

and the time-dependent wave-function YJx, t )  satisfies 

i t  follows that the wave function inside the box is a super- 
position of traveling waves moving in opposite directions 
(4). Each of the two components of '%'"(XI on the right-hand 
side of eq 5 is an eigenfnnction of the momentum operator. 
The eigenvalues are fp, = &n/2a. 

Obtaining a Momentum Wave Function 

Does the quantum uncertainty correspond simply to a 
classical uncertainty about the direction of motion of the 
particle? We can answer this question by determining the 
probability distribution for the particle in state Y, in the 
momentum space. Just as  the probability density to find 
the particle located within the infinitesimal range dz about 
x is 

the probability density to find the momentum within the 
infinitesimal range dp about p is 
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where Qn@) is  the momentum wave function for the state 
Y,. The momentum wave function i s  found by 
Fourier transformation of YJx) ( I ,  2,lO). 

Therefore, for the particle in a box, in the state 'Y,(x), 

(9) 

where 

Equation 9 gives an explicit, simple expression for the mo- 
mentum wave function, from which i t  i s  easily seen that 
the wave functions are  amplitude-modulated and n-de- 
pendent. 

Determining the Probability Distribution 

The most important observation from eq 9 is that Qn@) 
is nonzero for p values other than f p,! The quantum un- 
certainty is an uncertainty in the value of the momentum, 
as well as its sign. This is very different from the classical 
behavior. I t  i s  also different from expectations based on the 
observation that YJx) in eq 5 is a superposition of two mo- 
mentum eigenfunctions (4, 6).  The difference reflects a 
"quantum confinement" effect. Equation 5 holds only 
within the box. To satisfy the boundary conditions, YJx) = 
0, elsewhere. If Y(x) is specified by 

then Y(x) is not an eigenfunction of the momentum opera- 
tor. Only if Y(x) = e"'""'" holds without spatial restriction 
is a momentum eigenfunction obtained. 

The corresponding probability densities to observe the 
momentum in the infinitesimal range dp aboutp are 

where k = 1,2,3 ,  ... 
The figure shows the momentum probability densities 

for the particle in the first several energy eigenstates. The 
figure and eq 11 show clearly that there is a nonzero prob- 
ability density to obtain many values other than h h I 2 a  
from a given momentum measurement. 

A discussion of the momentum probability distribution 
can be found in the text Quantum Mechanics by C. Cohen- 
Tannoudji, B. Diu, and F. Laloe ( I ) ;  they provide a physical 
interpretation in  terms of "diffraction functions". However, 
they do not simplify to the explicit forms of our eqs 9 and 
11, and we have not found these in  any other texts. 

From eq 11, one can find the maxima and minima of the 
momentum distribution. From dp(p)ldp = 0, the conditions 
for the maxima are 

Mornemturn distribution of a particle for various values of n. 
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Thus the root-mean-square deviation of the position for the 
particle is 

These equations can be solved numerically (see remark 
4, below). The minima of the momentum distributions oc- 
c;r when p(p) = 0, t ha t  is, when 

sin r ~ ] =  o 

The srparatlon brtwtvn typ~cal  mmlma in the momentum 
dlsinbutlon 1s obv~ously n-independent and equals h u .  

Remarks 

1. The momentum distribution of a particle in a box gives a 
definite probability for observing values of p other than 
those carresoandine to the &en enerzies of the oarticle. - 
Interestingly, in analogy with the nodes in the position 
distribution of the particle (points in space where the par- 
ticle has zero probability density to be found), the momen- 
tum distributions also have zeroes at  special values of the 
momentum. In even n states (n = 2k), the particle cannot 
have the momentum values of p = lhla, where 1 t k, 
whereas in add n states (n = 2k - 11, momentum values of 
p = (21 - l)hi2a (with 1 # h) cannot be observed. We can 
regard the momentum wave function as a standing wave 
set up in the momentum space, but it is amplitude-modu- 
latedy 

2. The momentum of the particle in an eigenstate averages 
to zero due to the symmetry of momentum distribution; 
p(p) is an even function ofp. Thus, 

The probability densities at  zero momentum are 

In even n states, one cannot observe the particle with zero 
momentum (the probability is zero), whereas in odd n states, 
one does observe zero momentum of the ~art iele  with a certain 
probability. Surprisingly, in the state V',(x), with n = 1, the 
most probable momentum is zero, rather than f pl  = h12a. 
When n becomes larger (for odd n), the probability of finding 
the particle with zero momentum decreases. 

3. The uncertainty pmduet A p k  is hounded below, according 
to the Heisenbere uncertaintv orineiole. Its value is n-de- 

ticle is 

The mean value ofp2 is given by 

and the root-mean-square deviation of the momentum is 

Combining eqs 18 and 20, one obtains 

This exceeds the requirements of the uncertainty principle. 
The uncertainty product grows as n increases! At first glance, 
this might appear to conflict with expectations that the behav- 
ior grows increasingly classical as n increases. However, an in- 
teresting result emerges from a calculation of the uncertainty 
product A p k  for a purely classical particle subject to the fol- 
lowing assumptions. 

The ~art iele  has equal probability to be observed anywhere 
in the box. 
The momentum of the particle is either nhna or -nhl2a. 
with equal probability. 
The energy is constant at  the value n2h21(8ma2). 

Far the classical particle, the position and momentum aver- 
ages satisfy 

a > , =  a i 2 , a 2 > ,  = a2i3, <p>, = 0, and  <p2>, = n2h2/(4a2). 

This yields ApAz = n h 1 4 6  which is precisely the large n lim- 
iting behavior of eq 21. The classical uncertainty product is 
independent of the size of the box. 

4. The probability density at  p = ip, is a constant (n-inde- 
pendent). 

Most Probable Momentum 

The most probable momentum is  not  ?p, when t h e  parti- 
cle i s  i n  s tate  Y,(x) .  Instead, by numerical calculations (eq 
12) we find the  following values for t h e  most probable mo- 
m e n t u m ~ ,  i n  different states. 

The figure shows t h a t  the  momentum distribution for 
t h e  particle bifurcates from a single peak (in the  n = 1 
state) to two separate peaks n e a r p  = ?p, (for all s tates  n z 
2). Only when n becomes large does the  probability density 
p(p) reach i t s  maximum a t  p, - *,. Then the  quantum 
and classical descriptions a r e  similar, i n  accord with the  
Bohr correspondence principle. 
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