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In a recent note in this Journal (I), we discussed the 
quantum-mechanical problem of a particle in an isosceles 
right triangle. We showed that the eigenfunctions for this 
two-dimensional system are not separable functions of two 
variables even thouah the orohlem is exactlv solvable. The 
particle in an equilateral triangle also has nonseparable ex- 
act solutions but proves to he considerablv more comolex. 
The Schrodinger equation has been solved by a t  leas<four 
different approaches (2-6). However, the results are so dis- 
similar that, at  first reading, the eigenfunctions and even the 
energy expressions appear quite unrelated. Moreover, in two 
of the formulations, multiple sets of quantum numbers are 
required to specify a single state. 

A particle confined within an equilateral triangle of side a 
is described by the Schrodinger equation 

- (hz /2rn)  (dZ/Jx2 + J2/dy2) + ( l a )  = E+(xY) (1) 

such that $(x,y) vanishes on the perimeter of the triangle. 
With the coordinate system as defined in Figure 1, the 
boundary conditions take the form $(x,y) = 0 for y = 0, y = 
fix or y = @(a - x). 

We consider first the elegant solution of Mathews and 
Walker (3) (hereafter abbreviated MW). They constructed a 
lattice of equilateral triangles filling the xy-plane by repeat- 
ed reflection of the original triangle through each of its sides 
(see Fig. 2). Consistent with the above boundary conditions, 
one can require that the wavefunction $(x,y), whose domain 
is now the entire xy-plane, change sign with each reflection. 
Thus, as shown in Figure 2, reflecting OAB through side B 
gives ABD. The antisymmetry of the wavefunction is iudi- 
cated by the disposition of + and - signs. Repeating the 
reflections in a horizontal direction eventuallv oroduces tri- . . 
;inglr CEF, in whish the wavdunrtion is identirai to that in 
the oriuinal rrianfileOAH.'rhis implies the fdltwinr period- -. 
icity in-the wavefunction: 

+(x  + 3 % ~ )  = $ (X ,Y )  ( 2 )  

An analogous series of vertical reflections shows the wave- 
function to he identical in triangles OAB and HIG. Since the 
altitude of an equilateral triangle equals (fi/2)a, this implies 
the periodicity 

+ ( x a  + 4%) = + ( x A  ( 3 )  

Given its periodic structure, the wavefunction can be ex- 
panded in a double Fourier series as follows: 

Substituting #(x,y) into eq 1 gives an expression for the 
energy eigenvalues: 

E,,, = (h2/2m02)[( i2/9)  + ( k 2 / 3 ) ]  ( 5 )  

For each solution of the Schrodinger equation, the expan- 

Figure 1. Coordinate system far equilateral triangle. Equations of the three 
Sides specify boundary conditions. 

Figure 2. Original triangle OAB and pan of triangular lanice generated by 
reflections and rotations. 

sion (eq 4) contains only terms with indices j,k consistent 
with a single value of Ej ,b  according to eq 5. 

The symmetry properties of the system represented in 
Figure 2 imply further interrelationships among the coeffi- 
cients aj,k. For example, the signs in triangles OAB and OAG 
imply that $(x,-y) = -$(x,y), so that 

a .  =-a .  
i , k  J.-k (6 )  

Further, when OAB is rotated by 120°, turning it into OJK, 
the wavefunction is unchanged, so that $(-x/2 + ,By/ 
2,-6x/2 - y/2) = $(x,y). With use of eq 4, this implies 
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(I. = a .  
11 J'C' (7) 

when j' = -612) - (3k12) and k' = G12) - (kl2). A second 
rotation by 120°, into OGL, shows that $4-x12 - fiyyR,$xl 
2 - y12) = $(x,y), so that 

aj,& = a,.+.. (8) 

when j" = -612) + (3kl2) and k" = -612) - (kl2). These 
symmetry conditions enable us to write down explicit forms 
for the wavefunctions. Thus the ground state corresponds to 
the G,k) combinations (3.1). (3,-11, (-3,1), (-3,-I), (0,-2), 
(0,2). The ground state energy is given by 

while relations 6-8 enable us to  construct the corresponding 
eigenfunction: 

in terms of the notation 

The energies and wavefunctions of the first seven levels 
are presented in the table, with the MW functions given in 
one column. I t  can he readily checked that these functions 
do indeed obey the requisite boundary conditions. Note that 
six sets of indices are required to construct the MW eigen- 
function for each state. For the douhlv deeenerate levels 
(more on these later), one state is transf&me& into the other 
hv reversine the sims of each i and k. For the nondeeenerate 

KMV obtained this result by an ingenious mapping of the 
solution of a one-dimensional, three-fermion problem into 
that for a single particle confined to an equilateral triangle. 
The KMV quantum numbers 1,m are related to the MW 
indices j,k as follows: 

1 = (i + k) /2  (13) 

levels, sign-reversal merely ;esults in the negative of the 
wavefunction. 

The structure of the MW functions, each consisting of 
three positive and three negative terms, is suggestive of a 3 X 
3 determinant. Indeed, by approaching the problem from an 
entirely different direction, Krishnamurthy et  al. (4) (KMV) 
arrived at  solutions of the following form: 

In contrast to the MW functions, which require six sets of 
indices G,k), the KMV functions can he defined by six alter- 
native sets of quantum numbers (1,m). The ground state, for 
example, corresponds to (2,1), (1,2), (-1,-2), (-2,-I), 
(-1,1), or (],-I). Each of the +I,, thus defined is then equal 
to either $0 or -+o. as given in eq 10. The alternative KMV 
quantum numbers are related, using eqs 68, 13, and 14, as 
follows: 

= 

In terms of the KMV quantum numbers, the energy levels 
are given by 

1 1 
e2~i lz /%e2~i ly l& e2rild%e-2riI~lSs e-4rihi% 

ez.imd30ezrimyl& e z ~ i m i ~ e - 2 r i m y ~ ~ ~  e-4rim=l% 

KMV eigenfunctions for the first seven levels are also listed 
in the table. 

KMV point out that!or 1 + m = 3n (?here n is an integer), 
the functions + I , ,  - and +I,,,, + transform, respec- 
tively, as the A1 and Az representations of the symmetry 
group C3". For 1 + m = 3n + 1 or 3n + 2, the pair h,, and +;, 
transform as the E repreaentation. 

We have given an alternative solution of the equilateral 
triangle problem based on its C3" symmetry properties (5). 
We first define the auxiliary variables: 

w = (2w/A)(-y/2 - f lx l2)  + 2w (21) 
such that 

u + u + w = Z r  (22) 

in which A represents the altitude of the triangle. The wave- 
function vanishes, in accord with the boundary conditions. 
when u = 0, u = 0, or w = 0. The C3, symmetry group of the 
triangle is isomorphous with the symmetric group S3 repre- 
senting the permutations among the variahles u, u, w .  Apart 
from boundary conditions, the free-particle Schri5dinger 
equation (eq 1) admits harmonic solutions of the form f(clx 
+ CU) or, by virtue of eqs 19-22, f@u - qu), in whichp and q 
are constants. We construct C3,-symmetry adapted func- 
tions belonging to  the irreducible representations A1, Al, 
and E, respectively, by applying the following projection 
operators to f@u - qu): 

P ( A 1 ) = E + C 3 + C , 2 + u , + u 2 + u 3  (23) 

P ( A ~ ) = E + C ~ + C ; - ~ ~ - V ~ - ~ ~  (24) 

P(E)  = E + cC3 + c*G - q C -  6 0 ~ 8 -  Cr3C (25) 

r = exp(+2ri/3) (26) 

Here @ represents the operation of taking the complex con- 
jugate. To fulfill the houndary conditions, f must represent 
the function sin, cos, and e+', respectively, for At, Az, and E 
eigenfunctions. The explicit forms are as follows: 

\bzi = sin (pu - qu) + sin (pu - qw) + sin (pw - qu) 

+ sin (pu - qu) + sin (pw - qu) + sin (pu - qw) (27) 

$2 = cos (pu - qu) + cos (pu - qw) + cos (pw - qu) 

- cos (pu - qu) - cos (pw - qu) - cos (pu - qw) (28) 

eq = exp[i(pu - qu)] + r exp[i(pu - qw)] 

+ c* exp[i(pw - qu)] - expl-i(pv - qu)] 
- r exd-d(pw - qu)] - r* expl-i(pu - qw)] (29) 

where, for f = exp(+ 2 ~ i l 3 ) ,  q = 113,413,713,. . . a n d p  = q + 
1, q + 2, . . . ,while, fort  = exp(-2ai/3), q = 213,513,813,. . . 
a n d p = q + l , q + 2 ,  .... 

The energy eigenvalues in the present scheme are given by 
yet another formula: 

Epq = b2 + pq + q2)Eo (30) 

where Eo =2h2/3ma2, q = 0,1/3,2/3,1,. . . a n d p  = q + 1, q + 
2,. . . . The ground state energy Eo corresponds to E1o. More 
generally, Epo, withp = 1,2, . . . ,represents anondegenerate 
Al level. E,,, withp and q positive integers, represents a pair 
of degenerate Al and A2 states. E,,, with p and q nonin- 
tegers, which we can call "quark" quantum numhers, repre- 
sents a twofold-degenerate E level. 

In terms of p and q, a representative set of KMV quantum 
numhers is given by 

I = 2 p + q  (31) 
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Energies and Wavefundlono for Ftrsl Seven Levels of Equilateral Triangle 

@, g) a Energy a Symmetry Ilr". = a&.k] ' (Lm) of J.;: 

The A, and A2 functions can be reduced to more compact 
trigonometric forms as follows: 

$:: = cos [q&xlA] sin [(2p + q)iiylA] 

- cos [pfl*xlA] sin [(2q + p)nylA] 

- cos [(P + df i i i r lA1 sin [@ - q)iiylA] (33) 

$it = sin (2prylA) - 2 sin (piiylA) COS (p&xlA) (34) 

$:: = sin [q&xlA] sin [(2p + q)iiylA] 

- sin [pflrxlA] sin [(2q + p)iiylA] 
+ sin [(P + q)fln.lA] sin [@ - q)rylA] (35) 

The E eigenfunctions can analo ously be reduced. From eq i 29 we find that Re gq and Im $,q are given, respectively, by 
eqs 35 and 33, but wlth quantum numbers p and q now 
having "quark" values. 

Shaw (6) also solved the triangle problem by reformula- 
tion to a,quasi one-dimensional equation involving the com- 
plex variable x + iy. He obtained the A1 and A2 solutions 
given in eqs 33-35 but appears to have overlooked the E 
eigenfunctions. 

In Figure 3, we sketch the nodal structure of the first seven 
triangle levels, corresponding to the functions listed in the 
table. 

I t  is clear from Figure 3 that all the A2 functions and one 
from each pair of E functions possess a node bisecting the 
equilateral trianale into two 30-60-90 trianeles. Thus. a 
parr~cle in a 30-60-9U triangle has eigenstates yiven b y  eqs 
30 imd 35, with the allowed auantum numhers u = 113. 213. . . , . .  
1 ,... a n d p = q + l , q + 2  ,.... 

As discussed in refs 6 and 7, systems of high symmetry 
often exhibit "accidental" degeneracies beyond those im- 
plied by dimensionalities of irreducible representations. In 
the present case, for example, the first threefold degenerate 
level (Al + A, + Ap) occurs for E = 49Eo with the (p ,  q)  
combinations (7,O) and (5,3). The first fourfold degenerate 
level (E + E )  occurs for E = (9113)Eo, with (p, q) = (1113,813) 
and (1613,113). Such nongeometrical degeneracies can often 
be enumerated by applying results from number theory. For 

Figure 3. Graphical representation of eigenstates listed in ma table. The nodal 
SlrUCtUre of the first seven levels is shown. Energies are expressed in units of 
Eo. The quantum numbers given are lhe (p. q) set. 

example, the number of integer combinations (m, n) such 
that m2 + mn + n2 equals a particular integer is calculable 
(8) .  
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