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Quantum chemistry today farms an integral part of all under- 
graduate curricula in chemistry. In order to acquire a workable 
knowledge of this subject which is essential in all fields related to 
molecular structure, spectra, and bonding, one should be fairly well 
acquainted with the techniques of solving certain second-order dif- 
ferential eigenvalue equations. The traditional method of solution 
by power series expansion involves complex mathematics to such an 
extent that an undergraduate student wishing to learn the technique, 
often starts developing a sort of fear complex toward quantum 
chemistry. This unhappy situation can he greatly averted by taking 
recourse to the factorization method which leads directly to the ei- 
genvalues and a manufacturing process for the normalized eigen- 
functions without tedious mathematical manipulations. 

The factorization method was introduced by Schrodinger (I)  about 
four decades ago. Since then his ideas have been generalized eonsid- 
erahly in a number of sophisticated research papers (2-5). But cu- 
riously enough, this method ss such has not yet been recognized as 
a tenthook technique for the solution of quantum mechanical eigen- 
value problems. An equivalent approach, called the ladder operator 
method, introduced by Dirac (6) has heen followed in some quantum 
chemistry textbooks ( 7 , 8 )  for the treatment of harmonic oscillator 
and angular momentum problems. But the great potential of the 
factorization method is not fully exposed by such treatments. 

So far only two pedagogic articles, one by Salsburg (9) and the other 
by Peterson (10) have appearedan thissubject. Salsburg, in hisarticle, 
has shown how to factorize the radial equation of the hydrogen atom 
to obtain its eigenvalues and radial wavefunetions. Taking the same 
examole. a comoarison of this technioue with the oower series method 

to present itsmethodology to the reader, who himself can then explore 
its scope of application. The present article has been written with a 
view to meeting such an important pedagogic need. 

Our treatment is based essentiallv on the works of Infeld (2). and 
Infeld and Hull (5). The theory of tl;e factorization method i's devel- 
aped at first and then applied to solve some basic undergraduate 
problems. 

Theory of the Factorization Method 
T o  illustrate the basic idea of the factorization method, let 

us consider the  following differential equation 

If we define a pair of operations, R+,  by 

then i t  is a simple matter t o  verify tha t  eqn. (1) can he written 
in either of the  following "factorized" forms 

T h u s  if y he an  eigenfunction of eqn. (1) with the  eigenvalne 
X, then i t  is also a n  eigenfunction of R*R, with eigenvalues 

' To whom all correspondence should he addressed. 

(X * 1). Left-multiplying eqn. (2) by R- and (3) by R+, we 
get 

R-R+(R-y) = ( A  + 1)(R-y) (4) 

RtR-(R+y) = ( A -  l)(R+y) (51 

Now comparing eqn. ( 5 )  with eqn. (21, and eqn. (4) with eqn. 
(31, we see t h a t  R,y are also eigenfunctions of R+R, with ei- 
genvalues respectively decreased and increased by 2. Thus,  
we can write 

where a suffix on v identifies the  eigenfunction with respect 
to  the eigenvalue.lt is well-known tha t  the  operators R+-and 
R- are called a lowering and a raising operator, respectively. 
If we can find the minimum or the maximum value of X cor- 
responding to  the  bottom or the top  of the  eigenvalue ladder 
from some other consideration (this will b e  d~scussed fully 
later in this section), then we can write 

These equations indicate t h a t  there is n o  solution with the  
eigenvalue A > A,,, and A < Amin. Once y,,;, or y~,,,is oh- 
tained hy quadrature of the  first-order differential eqn. (8) 
or (91, the  rest can be found by the  successive application of 
R- or R+. 

T h e  tolxnv d i w t A m  d t l w  famtrimti tm nwrhwl i s d a  very 
thnc.ntar \ .  nature. It d o e  ns~r Ir:icl to  the nur~n.xliwd ei 
genfunctions nor suggest any recipe for the  determination of 
X,, or Amin. Moreover, a problem with degenerate eigenvalues 
cannot he represented by eqn. ( I )  which contains no param- 
eter other than X. T o  include all these aspects we now consider 
a general second order differential equation of the  form 

Here (x,m) is a real function of x ,  and characterizes the given 
problem. We shall assume t h a t  m takes u p  different discrete 
values like mo, mo + 1,  mo + 2, . . . etc., where mo is zero or a 
constant. T h u s  (x,m) depends parametrically on m. By the  
notation y(X,m) we identify different solutions corresponding 
t o  the  same X hu t  to  different m's. T h e  dependence of y on x 
has been suppressed here. I n  order to  solve eqn. (lo), we shall 
assume t h a t  i t  is possible to  write i t  in each of the  following 
factorized forms (cf. eqn. (2) and (3)): 

D+m+lD-m+ly(A,m) = [ X  - L(m + l)]y(A,m) (11) 

D-"'D+"'y(X,m) = [A - L(m)]y(A,m) (121 

where 

d 
D*"' = k(x,m) *- 

d r  
(13) 

and L(m) is a function of m. In eqn. (13) k(x ,m) is a function 
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of x depending parametrically on m. From a given expression 
of r(x,m), k(x,m) and L(m) can he obtained as follows 

Expanding eqn. (111, we get 

[k2(x,m + 1)  + k'(x,m + 1)  + L(m + l)]y(A,m) 

=- d2y(A'm'+ h y ( ~ , m )  
dx2 

which on comparison with eqn. (10) yields 

k 2 ( ~ , m  + 1)  + k'(x,m + 1)  + L(m + 1)  = -r(x,ml 

Replacing m by m - 1, we obtain from eqn. (14) 

k2(x,m) + k'(x,m) + L(m) = -r(x,m - 1) 

Similarly from eqn. (12) we get 

k2(r,m) - k'(x,m) + L(m) = -r(r,m) 

Adding eqns. (15) and (161, we obtain 
1 

k2(r,m) + L(m)  = -- [r(x,m) + r ( r ,m - I)]  
2 

which on differentiation with respect to x gives 
1 

2k(x,m) k'(r,m) = -- [r'(x,m) + r'(x,m - 111 
2 

Again, subtracting eqn. (16) from (15), we get 
1 

k8(x,m) = - [r(x,m) - r(x,m - I)]  
2 

which on substitution into eqn. (18) gives 

From a knowledge of k(x,m) and using eqn. (17), we now ob- 
tain 

1 
L(m) = - [ r ( x , m )  + r(x,m - l ) ]  - k2(x,m) 

2 
(21) 

Hence the criteria that the assumed factorization is possible 
are that k(x,m) be given by eqn. (20) and L(m) by eqn. (21). 
Of course. L(m) determined in this way must he independent 
of x ,  as assumed earlier. 

To ~ roceed  further we shall make use of the four theorems 
described in the following sections. 

Theorem I 
D*"' are mutually adjoint. 
Proof: To prove this theorem we will have to show that 

( D - ~ $ , I ~ ~ )  = ( $ I I D + ~ I $ Z ) .  

where $1 and dz are well-behaved functions of x. Now, 

Theorem I1 

If y(X,m) he a solution of eqn. (10) then D-"'+ly(X,m) and 
D+"'y(X,m) are also its solutions. 

Proof: Left-multiplying eqn. (11) by D_m+' and (12) by 
D+", we get 

D-m+'D+m+l[D-m+ly(X,m)] = [A - L(m + l)][D-mt'y(X,m)] 
(22) 

Comparison of eqns. (22) and (121, and of eqns. (23) and (11) 
reveals that D-"'+'y(X,m) and D+"'y(X,m) are solutions of 
eqn. (10) corresponding to the same X, hut m is now replaced 
by m + 1 and m - 1, respectively. Analogous to eqns. (6) and 
(7) we can now write 

D-"'+ly(h,rn) -y(A,m + 1)  (24) 

D+"'y(X,m) -y(A,m - 1) (25) 

By these two transformations we can generate all the eigen- 
functions corresponding to the same X hut to different m's. 

In quantum mechanics we are interested in obtaining ei- 
genfunctions which are quadratically integrable. Otherwise, 
we cannot have the probabilistic interpretation of the wave- 
function. The factorization method will, therefore, he of 
practical utility only when the functions generated by the 
application of D-"'+I or D+"' operators on a quadratically 
integrable function will he quadratically integrahle as well. 
As we shall show below, this important requirement will re- 
strict the value of m by the value of A, and eventually leads to 
the eigenvalue A. At this point we note that there may he two 
classes of problems, viz., class I and class 11. In the former L(m) 
is an increasing function of m, and in the latter it is a de- 
creasing function. In order to establish the condition for 
quadratically integrability we prove below two other theo- 
rems. 

Theorem lllA 

When L(m) is an increasing function of m, then the neces- 
sary condition that D-"'+' will produce a quadratically in- 
tegrahle function from another such function is that  

h = At = L(1+ 1) 

where 1 is an integer and m = 0,1 ,2 ,  . . . , l .  
Proof: Let y(X,m) he a quadratically integrable function, 

i.e. (y(X,m)ly(X,m)) > 0. Then from eqns. (11) and (241, we 
get 

<y(X,m + l)ly(A,m + 1 ) )  = (D-m+ly(X,m)lD-m+'y(A,m)) 
= (y(h,m)ID+"+lD-m+'ly(A,m)) 

= [A - L(m + l ) l (~(X,m)ly(A,m))  
> O , i f A > L ( m + l )  

Similarly, 

This process can he continued form + 3, m + 4, and so on. But 
since L(m) is an increasing function of m, the value of X - 
L(m) will gradually decrease (note that X is fixed), and for 
some value of m, say 1 + 1, we may have the contradiction 

(y(A,l+ l)(y(A,l+ 1)) < 0 

unless 

y(h,l + 1) = 0 

Hence by virtue of eqn. (111, we have 

A, + L(1+ 1) 

where 1 is an integer, and m = 0,1 ,2 , .  . . . 1 .  

Theorem lllB 
When L(m) is a decreasing function of m, the necessary 

condition that D+"' will produce a quadratically integrahle 
function from another such function is that 
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where m = 1.1 + 1.1 + 2. 

eqns. (12) and (251, we have 
- 

(y(A,m - l i ly(A,m - 1 ) )  
= [ A  - L(rnil(r(A,mily(A,m) 

2 0, if A > L(m).  

gives rise to the contradiction 

unless 

y(XJ - 1 )  = D+'y(A,l) = 0 (27) 

Hence by virtue of eqn. (12) ,  we have 

X I  = L(1) 

where 

m = l , 1 + 1 , 1 + 2 ,  

If mo f 0 ,  then theorems IIIA and IIIB warrant that 11  - ml 
rather than 1 be an integer. It can he seen also that for class I 
problems we have a finite number of solutions y(A,O), y ( A , l ) ,  
. . . . y(X,l),  hut for class I1 problems we obtain an infinite 
number of solutions, y(A, l ) ,  y(A,l  + I), y(A,1 + 2 ) ,  . . . . 

We shall now show how the eigenfunctions can be generated 
in their normalized form. It is obvious that once the starting 
or the key function is obtained by solving eqn. (26)  or (27) ,  
then whole spectrum of eigenfunctions can he generated by 
making use of eqn. (25)  or (24). The eigenfnnctions thus 
generated are, however, not normalized. For example, 

(y (A ,m+ l) ly(A,m+ 1 ) )  = [ A - L ( m +  l) l (r(A,milr(A,mi)  

and 

(y(A,m - l i l ~ ( A , m  - 1 ) )  = [ A  - L ( m i l ( ~ ( A , m ) l r ( A , m i i  

Thus even if y(A,m) is normalized to unity, y(X,m f 1)  are not. 
The normalization constants for these functions are [A - L ( m  + 1)]-' /2 and [A - L(m)]-'IZ, respectively. If we, therefore, 
define two operators iD+"' by 

{ 
[L(1+ 1)  - L(m)]-l/ZD+"' for class I problems, ,D*"' = 
[L(1) - L(m)]-'/2D+m for class I1 problems, 

and modify eqns. (24)  and (25), respectively as 

iD-m+'y(l,m] = y(1,m + 1) (28) 

tD+'"y(l,m) = r(1,m - 1) (29) 

then it is easy to verify that if y ( l , m )  is a normalized function, 
so also are y ( l , m  f 1) .  For class I prohlems, for instance, 

The case of class I1 problems can he proved similarly. 
Having described the essential features of the factorization 

method, we now summarize its working steps. 

1 )  Transform the equation at  hand into the standard form 
(10)  by a suitable substitution. All equations of the form 

2)  Evaluate k ( x , m )  and L ( m )  using eqns. (20)  and (21) ,  
respectively. 

31 Identifv the class of the vrohlem and determine the ei- 
genvalue. 

4 )  Define iD,"' 
5 )  Solve D-'+'y(l,l) = 0 for class I problems, and D+'y(l,l) 

= 0 for class I1 problems to obtain the starting function y( l , l )  
in an unnormalized form. 

6 )  Normalize y(1,l) and obtain the eigenfunction spectrum 
by means of eqn. (28)  or (29)  depending on the class of the 
problem. More explicitly, the normalized eigenfunctions for 
class I and I1 problems are given respectively by 

y(1,m - I )  = iD+"'y(l,mi = [L(1+ 1 )  - L(m)]-1/2D+my(l,m) 
(30) 

y(1,rn + 1 )  = ~D-~+'y ( l , rn i  = [L(1) - L ( m  + l)-'/2D-m+'y(l,m) 
(31) 

Applications 
In this section we have applied the factorization method to 

solve the Schrodinger equation for the hydrogen atom, alinear 
harmonic oscillator and the Morse oscillator. 

The Hydrogen Atom 
The Schrodinger equation for hydrogen-like one electron 

systems is given by 

To solve this equation we start by the usual technique of 
separation of variables. Letting 

$ = R(riT(Bif(4) = RTf (33) 

and substituting eqn. (33)  into eqn. (32) ,  we obtain the fol- 
lowing three equations for the three variables 

where A' and mZ are constants of separation. 
We shall solve these equations in the reverse order. The 

normalized solution of eqn. (36)  is given hy 
1 j=- a em (imm) (37) 

where the ~eriodic houndarv condition of f'warrants that m 
= O , + l , f 2  , . . . .  

We now turn our attention to eqn. (35). To bring it to the 
standard form we make the substitution 

Y = & G ~ T  (38) 

to obtain 

Comparing eqns. (39)  and (101, we find 

Hence hy virtue of relations (20)  and (21)  
, ,  , ,  

where p and p are never negative, and plp exists everywhere, 
can be transformed (11) into the standard form by the sub- 
stitution 

r = (ppil"P 
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Since L(m) is an increasing function of m,  it is a class I proh- 
lem. The eigenvalues are given by 

where 1 = O,1 ,2 , .  . . . 5 hX 
Then from the relation 

X = 8a2pElh2 

we have 

X' = l(1 + 1) 

where 1 = O,1 ,2 , .  . . . . 2 m. 
The operators, ID*"' are given by 

where n = 1,,,+1 

In this case, the operators .D+' are given by 

= [L(1+ 1)  - m(m - I)]-I" 

The starting function Y I J  is ohtained by solving 

The solution corresponding to 1 = l,,, = n - 1 is obtained 
from the relation 

[(i + t) cat 8 - $1 Yl,, = 0 

Integration of this equation yields 

Yli = A  sin'+'/2 8 
which on integration gives where A is the normalization constant and can he found by 

requiring g,,n-~ = Ar" exp (-9r12n) 

The constant A is determined from the normalization con- 
dition 

Integrating eqn. (41) 1 times by parts, we get 

Making use of the standard integral 
Thns 

we ohtain 
and 

The other solutions are ohtained using the relations 

Though in eqn. (37) m can he both positive and negative 
integers leading to different values off, the Y function will be 
the same for the pair f m because m appears as a squared term 
in eqn. (39). 

Now we solve the radial equation, viz., eqn. (34). Substi- 
tuting A' = 1(1+ I), andg(r) = rR in this equation we obtain 
after a little rearrangement 

In order to convince ourselves that the above procedure does 
generate the familiar hydrogenic orbitals we now find the 
explicit solution for n = 3. 

Using eqn. (47) we get 
9 712 

g3.2 = (i) (6!)-112~3 ex p (-Od6) 
. . 

Recalling that 
gr2pZe2 - 22 =--- 

h2 00 

where ao is the first Bohr radius, we have 
where 

Then 
g3,1 = 3Dt2g3,2 Comparing eqn. (44) with (lo), we find that (m is now replaced 

by 1, x by r, and r hy p )  

Therefore, 
and 

Thns L(1) is an increasing function of 1, and consequently 
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Since g = rR,  the radial solutions corresponding to the 3d, 3p, 
and 3s hydrogen orhitals are given respectively by 

(27 - 180 + 2uZ) exp 

where 
27- 

g = -  

Qa 

We now direct out attention to the T(0) part of the solution. 
From eqns. (42) and (431, we have 

a. Y2,2 = - s n W  0 
4 

Y2.1 = 2Dt2Y2.2 = !4)-LI2 

=- &sin312 cos 0 
2 

Thus, 

The f (4)  part of the solution is as given by eqn. (37) where m 
= O , f l , f 2 .  

I t  is interesting to note that once the quantum numher m 
is introduced in the problem, the other quantum numbers 
appear in a quite natural manner via the quadratically inte- 
grability condition of the prohlem. 

A Linear Harmonic Oscillator 
The Schrodinger equation for a linear harmonic oscillator 

is given by 

where @ is the reduced mass, and k is the force constant of the 
oscillator. Substituting h = 4r2pu2, where u is the frequency 
of oscillation, in eqn. (50) we get 

where 

and 

Letting X = J\/a 2- and A' = Xla, eqn. (51) can be reduced to 
the following dimensionless form 

which is identical to eqn. (1). I t  may he noted that m does not 
appear in eqn. (52). The factorization method, as has been 
developed in the last section, cannot therefore be applied as 
such. Infeld (2) has solved this equation by introducing m 
artificially and then following the general approach. In con- 
trast to the H-atom prohlem where m appears automatically 

as a logical consequence of the solution, one has to assume here 
that m can take up only positive discrete values. In order to 
avoid this forced assumption, we shall solve this equation in 
a slightly different manner. 

Since eqn. (52) is identical with eqn. (11, we can write 

and analogous to eqns. (6) and (7) 

T o  obtain the eigenvalues we investigate the conditions for 
quadratically integrability of $A,. Supposing ($A,~$x,) 2 0, we 
have from eqns. (54) and (55) 

where N = 0, 1, 2, etc. Similarly for the raising process, the 
condition for quadratically integrability of $A,+(~N+I) is 

The minimum value of A' which satisfies both the conditions 
is 1. Since A r k  are changing by 2, we have 

A ' = 2 N + 1  (59) 

Now, since A = A'cr = 8a2pElh2  we have 

Since there is no state below $1, we can write 

$1 = A  exp ( - X 2 / 2 )  

where the normalization constant A is found from the con- 
dition 

If we assume that ($A,J$x,) = 1. then from eqn. (53) we 
find 

( $ h ' + ~ \ # l ' + 2 )  = A'+ 1 

Thus (A' + +)-'I2 is normalized to unity. The normalized 
eigenfunctions are, therefore, related as 

= (Ai + l)- lp2R-jii i  

*\!L~ = (A' - R +#A, 

If we replace A' by N, the natural quantum numher for a linear 
harmonic oscillator, then we can write 
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The Morse Oscillator 
The Schrodinger equation for the pure vibrational motion 

of a diatomic molecule is given by (12) 

where p is the reduced mass, E is the total energy, and U(r) 
is the potential energy of the system. In the preceding example 
we have solved eqn. (63) for a simple harmonic potential. Al- 
though a good many features of the vibrational spectroscopy 
can be understood from this model prohlem, there remains 
also a lot of problems like the dissociative behavior of a di- 
atomic molecule, location of overtone bands etc., which cannot 
be accounted for. A more realistic potential function is needed 
for this purpose. The Morse potential is one such potential 
which is widely used. This potential has the following ana- 
lytical form 

U l r )  = D[1  - exp l-olr - r,lIlz (64) 

where D is the depth of the potential function, a is an empir- 
ical parameter. Defining q = r -re,  where re is the equilibrium 
internuclear separation, and substituting eqn. (64) into (63) 
we get 

*+ * [ E  - D - D exp ( - 2 4  + 2D exp (-mi)+ = 0 ( 6 5 )  
dq" h2 

If we put 

mZ = -2plE - Di/a2h2 

eqn. (65) can be reduced to the standard form ( m  is now re- 
placed by S ,  and X by -m') 

Comparing eqn. (66) with (10) and making use of eqns. (20) 
and (21) we find that 

e x p  1%) k(x,S) = ---- - S 
S 2  2 

L(S) = -S'2 

Since L(S) is a decreasing function of S, we have 

h = L(S, , , )  = -m2 

w h e r e S = m , m + l , m + 2  , . . . . .  
But S as defined above is a constant. Therefore, we have only 
one energy level for each S. Since the minimum value of S 
is 

( z p n v 2  1 

ah 2 

the lowest possible energy of the Morse oscillator is given 
by 

a2hz 
Ern = 11 + 7 L(S,,i,J 

Similarly, 

since, now 

Defining S - m = N, we can write in general 

where N = 0, 1, 2, . . . Recalling that I, = ( 1 1 2 r ) ( \ / m 5 ) ,  
where 

we can write the vibrational energy of the Morse oscillator 
as 

where o is the anharmonicity constant of the potential func- 
tion, and is given by - 

The vibrational wavefunctions of the Morse oscillator are 
quite complicated. We have, therefore, preferred nut to in- 
clude their determinations in this article which is meant for 
undergraduate students. 
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