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Teaching courses in quantum chemistry year after year one 
can become jaded by the use of the same problems over and 
over again in assignments and examinations. In addition, the 
existence of compendia of problems and solutions such as that 
of Johnson and Pederson (I), as valuable as they are, lead 
some students into making assignments into library projects, 
thus subverting their usefulness in training and evaluating the 
student. Although many of the old problems cannot be dis- 
carded because of their importance to the subject, it is clearly 
desirable to have an influx of new ~roblems to mix with the 
old ones. 

Any new problem has a certain intrinsic value no matter 
bow remote from real physical application; I would love to be 
able to assign the problem of a particle constrained to move 
on the surface of a Moebius strip or a Klein bottle. However, 
to be most useful problems should satisfy the following cri- 
teria 

1 )  Thev should illustrate and illuminate the orincioles and ~. ~~~~ , ~~ ~ ~~ 

methuds of quantum mechanics. 
21 ' l ' h ~ y  should be tractablr toatudenuof mderate marhminrical 

sophistication. 
3) They should have physically meaningful content in the sense 

that they should deal with quantities that can he compared with 
values measured in the laboratory. 

4) They should broaden as well as deepen the students' knowl- 
edge. 

In the course of some research involving model pseudopo- 
tentials. the author was imuressed bv the vwsibilities offered 
by model pseudopotentials as a source of problems which are 
not contained in current texts and comoendia and which 

which projects out spherical harmonics of a given 1. Z is the 
charge on the core. 

The Schrodinger equation for the Simons potential can be 
solved analytically. The BL values are fit to one of the states 
of each 1 usine emnirical enereies. For examnle. a single niece 

A 

of experime&l data accounts for all S s&&. The energy 
levels of the svstem obtained from the exact solution are given 

The exact wavefunctions of the system are hypergeometric 
functions (2) and are not discussed here. 

The Hellmann-Feynman Theorem 
The Hellmann-Fevnman theorem states that 

(See, for example the discussion in Levine ( 6 ) )  where Xis a 
parameter that appears in the Hamiltonian and II. is a sta- 
tionary state wavefunction. Since the exact energy level ex- 
pression for systems with the Hamiltonian given in eqn. (1) 
is known (eqn. 2), students can be given the problem of cal- 
culating expectation values for l l r  and 1/r2 without actually 
using the wavefunctions. This can be done by noting that 

% ,, , , , . ",. , , 
satisfy the criteria listed ahove. ~ h e o b j w ;  of this paper is to reslllts (,f the calculations give 
uresent some nrohlema h i e d  upon model r~seudopotentials . . 
imostly the ~ & o n s  Model potential (2)) and to indude some 
useful formulas and tables of parameters associated with the 
problems. 

The Nature of Model Pseudopotentials 
Manv nrouerties of atoms deuend nrimarilv on the valence " .  . 

electrons. The pseudopotential method first suggested by 
Hellman (3)  and hv (;omhas ( 4 )  and civen a firm foundation 
within ~ & t r e e - ~ o ; k  theory by phi& and Kleinmann (5) 
is a method for reducing an N + Z electron problem to a 
problem in Z valence electrons, taking the effect of the core 
into account by including a "pseudopotential" in a Hamilto- 
nian for the valence electrons. There bas been a great deal of 
recent interest in pseudopotentials because of the desire to 
do molecular calculations involving atoms with a great many 
electrons. Both exact pseudopotentials of the Phillips- 
Kleinmann type and model potentials based on Hartree-Fock 
results or parameterized using experimental quantities are 
being exploited in pseudopotential calculations. In this paper 
attention is focused on model potentials. 

The valence electron in a one-valence electron atom using 
the Atomic Fues Potential of Simons (2) is described by a 
Schrodinger equation for which the Hamiltonian is given 
by - B I ~ I  F? = -V2/2 - Z/r + Z - 

1 4  r2 (1) 

where BI is an adjustable constant for a given value of the 
orbital quantum number, 1, and is a projection operator 

and 

By putting in BI values appropriate to Li, Na, K, Rb, and Cs, 
the results can be used to examine trends in the behavior of 
the valence electron in going from one alkali metal to another 
in various states. Of course, for the alkali metals Z = 1. BI 
values for alkali metal atoms and singly charged alkaline earth 
ions are given in Table 1. This problem can also be used to 
demonstrate that (llr2) is not equal to ( l / r )2  and to show 
trends in "size" in going from Li to Be+, for example, where 
there are the same number of core electrons but different 
charges on the core (Z = 1 and Z = 2). The change in orbital 
size with excitation ( P  value) can also be examined. 

Varlatlon Theorem Problems 
The lowest state of asystem with a Simons type model po- 

tential is an S state. The question can be posed for the alkali 
metals as to the best approximation to this state of the 
form 

J. = N ? P ~ - . I  (8) 

where q is an integer and N is a normalizing factor. It can 
easily be shown that for this system and functions of the form 
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Table 1. Slmons Model Potential Parameters for Alkall Metalsa 
and Alkallne Earth Ionsb 

Atom 5 4 & .% B, 

Li 0.467453 -0.060090 -0.00340 0.0016 
Na 0.510188 0.182604 -0.02557 -0.0025 0.000 
K 0.682015 0.376552 -0.35484 -0.0239 -0.001 
Rb 0.726203 0.474331 -0.55599 -0.04103 -0.010 
Cs 0.812414 0.587552 -1.01948 -0.07645 -0.02 
Be' 0.63018 -0.06735 -0.00333 0.00112 
Mgf 0.85894 0.43336 -0.07455 -0.00671 
Ca+ 1.22213 0.86815 -1.48144 -0.06269 
Sr+ 1.35694 1.08377 -1.25970 -0.13286 
Ea+ 1.55449 1.32740 -1.29532 -1.04950 

4W.G. A,. and Gwdhiand. P. L.. Molac. Phyr.. 29, 1109(1975). 
aSirnons, G.. J. Chsm m*.. 55.758(1971). 

Table 2. Valves of f ( q )  

Table 3. Results for Single Functlon Two Electron Calcvlatlonr 
(Hartree Atomic Units) tor q = 1 

Atom E d ,  Em,. 

Be -0.862189 -1.0116 
Mg -0.717051 -0.8333 
Ca -0.565828 -0.6607 
Sr -0.524750 -0.6144 
Ba -0.474292 -0.5590 

of eqn. (8) 

The total energy E which is the negative of the ionization 
energy of the atom, is given by the sum of eqns. (9)-(11). By 
setting hEl& = 0, for any given value of q the optimum value 
of r is found to he 

Plugging the values of c for q = 0,1, 2,3, etc. back into the 
energy equation, one can find the optimum integral value of 
q. The best energy can then he compared with the ionization 
potentials of the elements. It should be noted that the exact 
result will not he obtained, since nonintegral values of q would 
be required. The exact values of q for the lowest S state are 
given by 

Calculations on Two-Valence Electron Atoms 
Writing the Hamiltonian for alkaline earth atom valence 

electrons in the following way 

the total valence electron energy is given by 

(*(~,Z)IAICC(~,~))  = E  (15) 

One can seek optimum functions x, of the form given by 
(8)  such that 

*(la = x(l)x(Z) 
The total energy can be written 

. . . . . . . . . . . 
in which the electron repulsion integral is 

where 

Either the formula for f (q )  or values of f (q )  can be given to the 
student. Values of f ( q )  for q = 0,1,2, and 3 aregiven in Tahle 
2. The optimum value o f t  is obtained using 3EIdf = 0 yield- 
ing 

4 
[p+l-f(9)] (2q + 1) 

L = (20) 

++&I 
Bo values are those of the alkaline earth positive ions (See 

Tahle 1). Total energies can he compared with the sum of the 
first and second ionization energies of the alkaline earths. The 
best results are obtained with q = 1. Results for this case are 
given in Table 3 along with the experimental energy values. 
More elaborate two electron problems can be carried out using 
the Roothaan formalism (7) by including the pseudopotential 
in with the bare nuclear Hamiltonian, hut they will not be 
discussed in this paper. More information on these problems 
can he obtained by contacting the author. 

Hellmann Pseudopotentials and the Vlrlal Theorem 
As an example of a problem based upon a model potential 

other than that of Simons, consider the Hellmann Pseudo- 
potential (3) which yields for a single valence electron the 
following Hamiltonian 

A = - V2/2 - Zlr + A exp(-2Kr)/r (21) 
One can pose the problem of the appropriate form of the virial 
theorem for this Hamiltonian. The quantum mechanical virial 
theorem for a single particle may he written 

where J. represents a stationary state. The validity of eqn. (22) 
for 

V(r) = -Z/r + A exp(-2Kr)Ir (23) 

follows immediately if the Schrodinger equation with eqn. (21) 
as Hamiltonian is assumed to he valid. Indeed if the method 
of Szasz and McGinn (8). is used to fit uarameters and S T 0  
type wavefunc~ions to the problem, then the \.irial theorem 
can he shvwn to he nutomat~ually satisfied. This illustrates the 
fact that scaled approximate wavefunctions satisfy the virial 
theorem as well as exact wavefunctions. Tahles of parameters 
and orbital exponents for wavefunctions for use with this 
potential can be found in an article by Hart and Goodfriend 
(9). 

Concluding Remarks 
No attemut has been made to examine the uossibilitiesfor 

problems in311 extant model potentials. without adoubt, they 
offer sin~ilar t\ues of clnrblem~ to thuse described above. VNIV 
such are to be found in the literature. 

Llterature Cited 
(1) Johnson. Jr. C. %and Pderson, L.G.. "Pmhlems and Solutions i n Q u a n t t  Chemistry 

and Physics." Addison-Wealey, Reading. Maas.. 1974. 
(2) Simona.G., J. Chem Phys., 55.756 11971). 
(3) Hellmann, H..J. Cham. Phys.. 3.61 11935). 
14) Gombas.P..I? Pkwik, IIR.164 (1941). 
(5) Phillips, J.C.,and Kleinmann, L., Phya. Reu.. 116,287 (19591. 
(61 Leuine, I. N.. WuantumChemi~try."Allyn and Bacon, Inc.,Ba*on, 1974. 
(7) Raothaan,C.C.J. .R~~.Mod.  Phys.. 23.69 (1951). 
(8) Smz,L.,and McQinn.G., J. C h m .  Phys, 42,2363 (1965). 
19) Hart. G. A.. and Goodfriend. P. L.. J. Chem. Phys.. 58.448 (1970). 

640 I Journal of Chemical Education 


