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Green's functions and integral equations are very useful 
twls  for solving Schrodinger's equation. In making a re- 
cent survey of texts on quantum chemistry I was aston- 
ished to find the complete neglect of the use of these pow- 
erful techniques. They are so fundamental to quantum 
mechanics that Richard Feynman has completely devel- 
oped the subject in terms of Green's functions and inte- 
gral equations ( I ) .  His "path integral" approach was the 
basis for the study of quantum electrodynamics. This is 
not the only field where these techniques are useful. Most 
texts on quantum mechanics develop the subjects while 
introducing scattering theory (2-4). Their power for ap- 
proximating solutions to the Schrodinger equation via 
perturbative and iterative techniques is also usually de- 
veloped along with scattering theory. Although there are a 
number of specialized texts 15-7) which deal with Green's 
functions and many-body theory, very little is said in cur- 
rent texts on quantum mechanics about many-body theo- 
ry or the application of Green's functions and integral 
equations to chemistry. These subjects are playing an im- 
portant role in current research and will continue to be 
developed. I feel i t  important to introduce them in the 
quantum chemistry coune or preferably in the physical 
chemistry course. After solving the particle in a box prob- 
lem via differential equations I give my students the fol- 
lowing introduction to Green's functions and integral 

As a check the reader should differentiate eqn. (6) twice 
to yield eqn. (2). Now 

Since x lies on the closed interval {0,11 eqn. (7) can be re- 
written as 

where H(t) is the Heaviside function 

Equation (7) can also be obtained by taking the Laplace 
transform of eqn. (2), solving for the inverse Laplace 
transform of Nk), and introducing any two arbitrary solu- 
tions to the homogeneous equation 

This method of obtaining eqn. (7) closely resembles the 
method of solving Schrodinger's equation in momentum 
space. 

We now impose the second boundary condition to solve 
for ol 

equations. 
The Schrodinger equation for a particle bounded with !MU - 0 = o - (10) 

infinite potential to a one dimensional box of unit length 
is (8) Thus 

R' dS$(x) + V(x) = E $ h )  (1) 
x = 1 - € - ( - H x  - f d  (11) 

2m dx' 
0 forO'x51 *(x) has the form "") = otherwise 

with boundary conditions +(O) = $(I) = 0. This is also the fix) = K f h )  
equation for a vibrating string with fixed endpoints. where K is an integral operator defined by 

Since the potential outside of the box is infinite we can 
set $(x) = 0 for this region of space and solve eqn. (1) for 
the interior. Rearranging one has Kf(x) = L1lx(l - 0 - (x - OH(x - F)lf(%)dE (12) 

where 
2mE 

f(x) = *(x) (3) 

Integrating once we obtain 

where 

/ a = V(O) 
/ - 

A second integration yields 

where the boundary condition +(O) = 0 has been invoked. 
In eqn. (5) we are integrating over a triangular region in 

the 1,,5 plane. Inspection shows that this can be equival- 
ently wn'tten as 

In eqn. (12) x(1 - [) - (x - OH(x - 5) is the kernal of 
the integral operator K. When the kernal comes from the 
solution of an equation with a differential operator, it is 
called the Green's function of that operator for the appro- 
priate boundary conditions. Thus G(x,[) = x(l  - f )  - (x 
- OH(r - €) is the Green's function of -dZ/dx2 subject 
to  the condition &(O) = $(I) = 0 or 

F(1 - 5 )  O-CESx 
= Id1 - 0 x<[-<1 (13) 

Noweqn. (11) may be rewritten 

$(x) = L'G(X, Of(t)dF (14) 

and using eqn. (3) 

w = A ~ ' G ( X ,  E ) $ ( E ) ~ F  (15) 

where 

A = 2mE/RZ (16) 
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Equation (14) looks very much like the integral repre- 
sentation of the three dimensional Schmdinger equation 
which is obtained by applying the Fourier integral theo- 
rem to the wave function expressed in momentum space 
(9). 

Equation (15) is a homogeneous Fredholm integral 
equation of the second kind (10). Introducing fi = 1 / A  one 
can readily see that this is an eigenvalue problem 

K+(x) = &(x) (17) 

This result is valid for any linear ordinary differential op- 
erator and enables one to write the Green's function for an 
inhomogeneous eqn. (2) in terms of the eigenfunctions and 
eigenvalues of the corresponding homogeneous eqn. (18). 

Our problem is not one of an inhomogeneous equation, 
however. If we could expand eqn. (13) in an infinite series 
we could immediately identify &(x)  and A, by eqn. (27). 
These are just the quantities we are after. Since x is 
bounded on 10,11 a Fourierexpansion is appropriate. 

The Fouriersine series of eqn. (13) can be written 
Equation (1) was an eigenvalue problem i.e. 

where 
in fact, fi is just E-1 and K is the operator inverse of 
-dZ/dxZ including boundary conditions. 

Since, in eqn. (13) G(x.0 = G(t,x), the Green's func- 
tion is symmetric. Because of this symmetry we are as- 
sured that the eigenvalues are real and the eigenfunctions 
corresponding to different eigenvalues are orthogonal (11). 
At this point, eqn. (17) may he solved using the standard 
methods for solving a homogeneous Fredholm equation 
(12). However, we will make use of another property of 
the Green's function to solve eqn. (17) by inspection. 

Let us look at  eqn. (2) 

Solving forb, in eqn. (29) one obtains 

Therefore 

@,(XI = i2Ydsinnrx 

A. = n W  = 2mE/V 
E = n'k2/8rn 

Suppose -dZ/dxZ possesses a complete orthonormal set 
of eigenfunctions Idn) so that 

One might ask why bother developing the integral equa- 
tion? Notice the integral operator is bounded whereas the 
differential operator is not. Theorems about eigenfunction 
expansion and completeness are thus more easily derived 
in the integral formalism. The integral equation incotpo- 
rates the boundary condition. One also has new numerical 
and variational approximations which complement similar 
approximations in the differential equation formulation. 

For example most students of quantum chemistry are 
introduced to the Rayleigh-Ritz variational procedure for 
the Schrodinger equation. For the Hamiltonian operator 
and an appropriate trial ket (13) 

We could write 

and for the integral operator or inverse Hamiltonian (14) 

Expanding the ket I+> in terms of a linearly independent 
h a i s  li> gives 

and 

a, = -b.lA,, ( 2 2 )  

We can now write If we choose the coefficients Ci so that R is as small as 
possible (eqn. (31)) or as large as possible (eqn. (32)) we 
can expect a close approximation to the eigenvalues. In 
either case we obtain the extremum by differentiating R 
with respect to each Ci end equating the result to zero. 

This can be summarized by the secular equation 
Because the I&{ are orthogonal we can write 

b. = /b.*(€)f(E)dE (24) 

Let us write eqn. (23) as 

where L,, is (ilLli), L is either H or K, Rf is the extremal 
value of R and h,, = (ilj). 

The n roots Rh ere approximations to the first n eigen- 
values (15) The Cjk determine the trial wave function 
corresponding to the kth eigenvalue I & >  = 1 C,R(i>. 

Let us use a trial wave function to get an'approximation 
to the ground state energy of the particle in a box. First 
we use the differential equation 

Then 

f ix )  = .fGir,OfiC)d~ (26) 

where H = -dZ/dxZ and h = 2mEp2.  Let 
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x C,li> = C,x(l - x) for 0 5 x 5 I 
4 = { i  

0 otherwise 

This is a simple trial function satisfying the boundary 
condition @(0) = @(I) = 0. Now 

H , ,  - R,*A,, = 0 (38) 

R,* = 10 (39) 
For the integral operator 

KJ. = PJ. 440) 

Using the same trial function 

Notice that f i  = 1 / A .  Comparing we see 

A (exact) = s2 -- 9.870 
A (diff.) = 10 

A(integ) = 9.881 

This simple example shows how the integral and differ- 
ential forms of Schrodinger's equation can he used to 
complement one another in a variational calculation. The 
reader should note that the trial wave function for the dif- 
ferential operator must satisfy the houndary conditions of 
the problem. In the integral case the Green's function 
forces the proper houndary conditions for any trial wave 
function. In fact, one can choose the trial function 

for the integral variational procedure and obtain an upper 
bound of twelve to the lowest eigenvalue. 

The solution of the particle in a box problem using 
Green's functions and integral equations is somewhat 
like breaking peanuts with a sledge hammer. However, 
now that an introduction has been given much more diffi- 
cult problems can he handled using these powerful tech- 
niques. In our physical chemistry course we use this ap- 
proach to solve diffusion problems and also to give an in- 
troduction to scattering theory. This paper has shown how 
the integral formulation can complement the differential 
formulation in a variational calculation. The two formula- 
tions also strongly complement one another as iterative 
tools. The reader interested in further study should con- 
sult the fine hwk by Greenberg (16). 
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