
The concepts of "resonance" and "ex- 
change" have caused and will probably forever cause 
much confusion among chemists. Since it is hardly 
possible to penetrate deeper into the nature of mole- 
cules without a sound description of their binding forces, 
it is certainly worth while to expend some labor in 
making these things clear. The difficulty is to design 
some model which does not violate the fundamental 
quantum mechanical principles but, on the other hand, 
is simple enough to be understood by, for instance, 
organic chemists without too much of theoretical 
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education. 
Much of the hard mathematical labor in the ordinary 

Coulomb and Resonance Integrals 

in Molecular Orbital Theory 

textbook quantum chemistry comes from the necessity 
of working with central forces. Generally the theory 
starts with the exact model of the hydrogen atom, but 
as soon as the problems become of a two-center nature 
very serious approximations are required in an "easy" 
treatment. It could be questioned whether it would 
not be possible to obtain more instructive results by 
studying the one-dimensional rectangular-box potential 
simultaneously and treating the latter problem with 
and without similar approximations. The present 
paper deals with an illustration of how magnitudes such 
as Coulomb and resonance (by some authors called 
"exchange") integrals arise in MO LCAO (molecular 
orbital, linear combination of atomic orbitals) theory. 
Contrary to the true central-force model, the present 
one-dimensional model allows an easy, exact treatment, 
and it may also be subjected to an approximate treat- 
ment, fully analogous to the current simple treatment 
of H,+.' This double treatment, which could be 
carried through in detail by most students of physical 
organic chemistry, shows how the magnitudes men- 
tioned above arise from and thus are mere products of 
our crude method of LCAO approach. 

The model of the particle in a one-dimensional box 
with slightly penetrable walls and its solutions have 
to be known and understo~d.~ Also the general sym- 
metry properties of wave functions have to be realized. 

Two rectangular potential wells approach each other, 
corresponding to a total potential-energy function of 
the type illustrated in Figure 1. The one-dimensional 
time-independent Schrodinger equation for a single 
particle is 
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In the region xl < x < xz, V = 0, hence 

I t  is obvious that J. must be a sine function in this 
region, say 

$,z = A sin (crz + 6 )  (3) 

where A and 6 are parameters giving the required 
generality. Owing to the symmetry conditions, 
equation (3) will also reproduce the solution in 
the region -xz < x < -x, with the same numerical 
values of the parameters A, a, and 6 but with some 
obvious changes of sign (or could always be considered 
to be a positive quantity). For the two lowest energy 
levels (with which we shall be concerned here) there 
should be no node within these two intervals. 

Figure 1. Double-box potentidenergy function. 

In the regions x < -x2, -XI < x < XI, and x > XZ, 

V = Vo > E and eqnation (1) becomes 

For x > x2 the wave function must be of the form 
$S = Ce-8" ( 5 )  

where p > 0. The same form could be used for x < -x2 
with proper changes of sign. In the central region, 
-XI < x < XI, the wave function must (for symmetry 
reasons) be of the type 

= B'(ePi zt e-8") 

and it is convenient to use the hyperbolic functions. 
Considerations of the symmetry show that 

B eosh Dz for the ground state (6%) 

*r = {  B sinh gz for the first excited state (6h) 

Some assumption about the capacity in phase space 
of the potential wells has to he made, and we write 

2mV,aa/6a = n2 (7) 

where n is a pure number. From the definitions of 
equations (2) and (4) of or and p, re~pect~ively, the 
following relations are obtained: 

@"a' = n* - aw (8) 
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The usual claim for continuity of the wave function 
and of its first derivative is now used to solve for a. 
Equations (3), ( 5 ) ,  and (6) give in this way 

i 0 tanh 82, for the ground state (10n) 
a cot (-5, + 6) = 

0 eoth Bz, for the fimt excited ( lob)  
state 

a cot ( a n  + 6) = -0 (11) 

If the distances of Figure 1 are introduced and further 
Lua = z, equations (10) and (11) could be transformed 
into equations (12) and (13) by means of the relations 
of equations (8) and (9) : 

( cat 1(1. - l ) z  + 61 

The system ofSequations (12) and (13) can now be 
solved empirically for z and 6 if fixed values are assigned 
to r (r > 1) and n. From the expected shape of the 
wave function it is evident that the angle [(r - 1)z + 61 
must be in the first quadrant and [(r + 1)z + 61 in the 
second (or, possibly, the third and fourth, respectively). 
I t  is then easy to plot 6 as a function of z for each one of 
the two equations and find the point of intersection. 
What is needed for a reasonable degree of accuracy is an 
ordinary slide rule and some tables, all of which are 
found in, for instance, "Handbook of Chemistry and 
Physics." 

The eigenvalue corresponding to the values chosen 
for r and n is easily obtained from z in terms of Vo by 
means of equations (2) and (7) : 

E/Vo = aVia/2mVo = aaa'/nP = z2/nP (14) 

By varying r (r > 1) and keeping n at some suitable 
fixed value, it is possible to find how the energy of the 
two lowest levels changes with decreasing distance 
between the boxes. Figure 2 shows the result for n 
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Figure 2. Energies of ground rtote and flrrt excited state for a particle in 
the potential of Figure 1 lr > I l and for a particle in o single box lr < 1 ); 
n = 2 for separate box. Dorhed line indicates ground-state energy o t  
inflnite separation of boxer. 

= 2. I t  is obvious that the grouud state involves an 
attraction and the first excited state a repulsion. 
Figure 3 shows the shape of the eigenfunctions and the 
position of the energy levels for n = 2 and r = 1.2. 

Figure 3. Exact energy levels and r o v e  funclionr fa r  the  ground rtote 
and thefirst excited state; n = 2 , r  = 1.2. 

When r = 1 the two boxes touch oue another, and 
the model must be modified. It is hard to design a 
suitable model for r < 1. The assumption underlying 
the curve in Figure 2 is simply that of a single box of 
depth Vo and length 2(r + 1)a. A couvenient method 
for solving the single-box problem is give11 by Schiff.l 
Xot too much attention should be paid t,o the behavior 
of this part of the curve, however, as the model involves 
serious oversimplification, as pointed out and discussed 
by Kauzmann.3 The most interesting phenomenon is 
the attraction or repulsion before the two boxes t,ouch 
one another. 

The eigenvalues could obviously be computed from 
the above equations to any desired degree of accuracy. 
An approximation is inherent in the model per se but 
no further approximations are required in the mathe- 
matics. Sothing like Coulomb or resonance integrals 
emerges, and no mention is made about the electron 
being in one or the other "atomic orbital." The 
situation leading to such concepts in the t,reatmeut of 
the perfect model could be illustrated in the following 
way. 

Assume that the ground-state eigenvalue and eigen- 
function of the single-box problem are known, but we 
hesitate to expend the mathematical labor involved 
in solving the system of equations (12) and (13). We 
could then try to simulate the mave function of the 
double-box problem by a h e a r  combination of the 
known single-box wave functions. The eigenfunctions 
for two single boxes of length 2a and depth VO, the 
magnitude 2mVoa2/fi2 being equal to 4 as before, are 
shown in Figure 4. I t  is obvious that the combinations 

#+ = A'+(+I + +,) (15) 

and 4- = N-(+z - $+) (16) 

must bear a strong resemblance to the functions of 
Figure 3. N+ and N- are normalizing factors, and the 
indices I (left) and r (right) refer to the relative positions 
of the two lmxes and functions. 

The function $L is the exact eigenfunction correspond- 
ing to a potential-energy funct,ion V, = V o  everywhere 
except for -x2 < x < -xi, where ITr = 0. In the same 
way fiL., is the exact eigenfunction corr~spondiug to the 
right-hand potent,ial well at xi < .T < a. 

~ K A U X M ~ N ,  WALTER, "Quantum Chemistry," Academic 
Press, Inc., New York, 1957, p. 245. 
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The normalization constants are found from the 
conditions 

1 = N *1 S-'-- ( + I  A $,j*dz 

= N +2  (S-': J.r2r1z + S-': &'dz A 2 J-+: W&) 

= N+2(2 + 2A) 

or N + ?  = [2(1 1 A)] -' (17) 

where $, and $, have been assumed to be normalized 
in themselves and A is the overlap integral 

A  = $ - + m k L z  (18)  

The magnitude of the latter depends of course strongly 
on the distance between the potential wells, i.e., whether 
there actually is a region where both functions simul- 
taneously reach considerable values. 

If the difference between the double-box Hamil- 
tonian, H, and the single-box Hamiltonians, H z  and 
H,, a difference in the potential-energy funct,ion only, 
is kept in mind, i t  is now possible to obtain an ap- 
proximate expression for the energy from H and, for 
instance, $+ : 

E+ = 1: $+H$+dz = !V+ZJ-+: ( A  + H (*i + SrMr 

= A:+' [S-': *rH+idz + S-+: +,H+dz + 
J-': +iH+,dz + S-+: $ r ~ # ~ d z ]  

= [J-+I hHwhdz - Jc vhVoil.zdz + 
J-+: *.H,!Ldz - s--=; *,Vo*dz + 
J-+: +(.iHr+slz - S-:: +rVo+,dz + 

J-+: *,Hi*& - S;*.v,*,dz] 

where E, denotes the exact energy of the single-box 
system. 

In  the same way the approximate wave function 
$- gives 

The net binding energy betveen the two boxes is 
conscquently 

"v' for the ground state 
l + A  

X--~o for the first excited state 
1 - A  

All magnitudes i~ivolved are positive quantities. 
From purely geometrical considerations it is obvious 
that p ,  the product of the two different J.'s integrated 
over one of the well intervals (one small and one large 
factor in the integrand) is larger than A, the square of 
one of the J.'s integrated over the other well (tvo small 
factors in the integrand). Hence there will be a binding 
force in the ground state and a repulsive force in the 
excited state. 

Figure 4. Single-box patentiol-energy functicnr, energy levels, and wove 
functicnr used in the approximate treatment of the double-box system. 

The expressions of equations (19) and (20) are 
exactly aualogous to the expressions obtained by the 
ordinary method for the energy of the molecule Ha+ 
except for the internuclear repulsion term.' The 
magnitude - A V O  is of the same nature as the ordinary 
Coulomb integral, the energy of interaction between 
an electron in the orbital of olie atom mith the potent,ial 
well of the other, and - p V ,  is in t,he same way analo- 
gous to the ordinary resonance integral. 

From these two treatments of the double-box system 
it is evident that concepts like Coulomb and exchange 
or resonance integrals arise from the approximate 
method used to handle the mathcrnatics and are by 
no means given by nature. The exact t,reatment is 
the straighbforward solution of the problem of one 
particle in a double-well potential, and any mention 
of, for instance, the interaction of an elect,ron in one 
atomic orbital mith the nucleus of the other atom is 
not required until the latter, approximate method 
is used because of our reluctance to  make a straight- 
forward, exact mathematical treatment and our dis- 
positiou to use what we know from a simpler problem. 
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