
NOTE ON THE FORCED AND DAMPED OSCILLATOR 
IN QUANTUM MECHANICS1 

A B S T R A C T  

T h e  wave equations for the  forced, damped, and forced and damped oscillators 
are solvecl in closed form for an arbitrary forcing function; the solutions produced 
being i11 one-to-one correspondence with the stationary states o f  the ~mforcecl, 
~~nclarnpecl 'Iamiltonian flo. T h e  quanta1 motion is closely connected with the 
classical: for the forcecl oscillator the probability clensity is that  o f  130 but moves 
as a whole with the  classical motion; fcr the forced and clampecl oscillator this 
~notioll is acco~npaniecl b y  a corltraction progressing eventually into a delta 
function at the classical position. 'Transition probabilities between states o f  ~ I o  
are computed in the case o f  forcecl motion and depend solely on the classically 
acquired energy o f  the  osciIlator at any  t ime.  T h e  transition probability \ianishes 
strictly only when this energy has a value falling a t  the  roots o f  a Laguerre poly- 
nomial associated with the transition. T h e  classical dipoIe radiation emitted b y  
a d i s t~~rbcd  oscillator is, when the  clamping force is identified with the  force 
o f  radiation damping, that  o f  the classical oscillator: a shiftecl and broadelled 
line. 

INTRODUCTION 

The customary develop~ne~lt of perturbation theory for time-varying per- 
turbations ordinarily leaves unanswered the question of the long-time behavior 
of the perturbed system. Even supposiilg a perturbatioil calculatio~l to be 
carried out to any desired order of accuracy, there remains the serious problem 
of the convergence of the calculation, about which little seems to be under- 
stood. We should like here to slcetch the rigorous solution of the quantum 
motion of an oscillator exposecl to an arbitrary time-varying external force. 
Special though the oscillator is, one inay hope from a full lcnolvledge of a 
simple problem to learn something of the nature ol the answers to  the more 
general questions posed above, or perhaps to replace these questions by more 
relevant ones. I t  will appear below, for example, that  the effect of a perturbing 
force is intimately related to  the correspondiilg classical motion, and it is not 
a t  all clear that discussing the perturbation in terms of tra~lsition probabilities 
betlveen unperturbed states is in general very illuminating. 

Additionally it will be pointecl out how the motion of the damped and 
sin~ultaneously forced and damped oscillator inay be solved. We shall have 
altogether a little isomorphism of the simple classical motioils that  are so 
iilstructive and their equally simple quanta1 counterparts. Our object will 
be principally mathematical for the present, namely to demoilstrate techniques 
for managing the wave equation; in another report it is planned to work out 
illustrative examples and physical consequences in greater detail. 

'hIanuscript received October 17, 1057. 
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FORCED OSCILLATOR 

For the Newto~liarl motion of an oscillator subject to an external force 
F(t) we have 

and for the quantum motion, 

ii2 a2$ -- -- a $ 
?+ [ + k ~ ~ - x F ( t ) ] $  = ifi --- 

2m ax- at ' 

We may construct solutions to (2)  that are in one-to-one correspo~lde~lce 
with the unforced stationary solutions ( F  = 0 )  as follows. \i\Trite $ = 

exp[xg(t)] and then x = +(x- u ( t ) ,  t ) ,  where g and z~ are to be determined. 
The Schrodillger equation tra~lsforms'Villto 

ii2 a2rq+(. ) a+ --- - ziizi--g -- 
"m at- at 

where [ = x-u( t ) .  Choosing now g and u so that the coefficients of a+/a[  
and [c$ vanish, 

-mu = i f i g ,  

(3) ku-F-if ig=O or mii+ku=F,  

one is left with 

ii2 2 
6(t)  = +kzt2-h- i f iu~--g  

2m 

= +rnzi2 - +ku2. 

Thence, and t  variables being separable, 

f . 1 4 = \i, exp -: S [6 ( 1 )  +E,,Idtf esp ( - %a't')?~,~(at), 

a4=mk/K2 ,  E,=(n++)fiwa ( w o = [ k / m ] i ) ,  

I I ,  = nth Hermite poly~lomial, M,," 

I11 ~vords, a class of solutio~ls of equation (2) is that formed from the stationary 
states of the unforced problem, with x  replaced by 2: and with a phase 
exp(-i/fi)(S6dt+xg); by equation (3) [ is nothing other than x-xo(t), and 
by ( 4 )  6 is the classical Lagrangian for the unforced motio~z written as a 
function in time of classical forced position and velocity. 

*An alternative route for tra~~sformation is via contact transformation of the classical 
I-Iamiltonian. 
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Conventionally we may suppose an initial state $(x ,  0 )  that coincides with 
one of the eigenfunctions v,(x) of the unforced Hamiltonian. Then if the 
classical motion (1) be restricted to the initial conditions xo(0) = 0 = ko(0 ) ,  
$ ( x ,  t )  is 

Po denoting classical momentum mio(t).  Plainly these eigenfunctions form a 
complete set a t  any time t and a superposition of them can represent an 
arbitrarily specified wave function a t  any time. Though ifi$ = H(t)$ can 
possess no "true" stationary states, i t  is clear that in some suitable t ( x ,  t ) -  
space it may do so. 

The meaning of the t-stationary states is a t  once visible: ~ ( t )  is just xo( t ) :  
the probability density 

dances a classical dance centered a t  the instantaneous classical position xo(t), 
moving in toto classically. This generalizes the well-known "oscillating wave- 
packet" solution of the unforced problem. 

The computation of the transition probability 
cn 

prim = I J-_ $nl(x, t )  vn* (x)dx 1 7 

giving the probability that a t  time t the oscillator is in the unperturbed state 
v, if initially it was in the state v , ~ ,  is readily performed using the generating 
fu~lct io~l  for the Hermite polynomials. The  result is 

where 
classical energy, +mko2+ i k x a  

' o ( t )  = quantum energy, fiwo 

and v is the greater, p the lesser of m ,  n ;  Lp' denotes the associated Laguerre 
polynon~ial. There follo~vs the rigorous selection rule that  the trallsitio~l prob- 
ability vanishes only when the classically accumulated energy of the oscillator 
in ~ ~ l l i t s  of fiwo falls a t  a zero of the appropriate Laguerre polynomial. The 
discussion of several interesting illustrative examples will be taken up a t  a 
later time. 

DAMPING 

For the li~learly damped motion of a particle in a field of force V(r) the 
Newtonian equatioil 

may be cast into Lagrangian form by means of 
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A brief quantum-mechanica1 cliscussioll of the damped oscillator was given 
first by Icaliai (1948). Havas (1956, 1957) has co~lsiclerecl quite ge~ierally tlie 
theory of niultipliers, such as exp(Xt) above, that alloiv a Lagrangian formula- 
tion of a broad class of Kewtonian problems not otherwise fitting into the 
Lagrange-Hamilton scheme of mechanics; and he has emphasized the im- 
possibility or else ambiguity (due to the ~nultiplicity of possible integrating 
factors) of proceeding to quantization by the ilsual rules." Although the 
meaning of doing so is not altogether clear a t  this point, we shall in the 
co~lventional way quantize the damped motion described by L and shon? 
that physically reasonable results are conseqilent. 

By the custo~narp route, the Hamiltonian implied by L is 

ancl is neither the energy nor any constant of the motion, but is just the 
generator of motion. To  place I3 in a more familiar light, make the contact 
transformation 

r = exp(-$Xt)R, p = exp(;Xt)P, 

giving the new Hamiltonian 

in which the whole burden of time dependence is in the potential-energ). 
term. When T7 is homogeneous of the second degree, the 17 term is V(R), and 
G, being free of t, is a constant of the motion and is an energy though not 
the energy. For the one-dimensional oscillator, for example, 

The further transformation in this case generated by the generating fuliction 

gives a new Hamiltonian 

in the new momentum ll = (w/wo)P and conjugate coordinate X = (X/2mwwo)P 
+(wo/w)R, where wo is the undamped frequency (k/m)*, w the damped fre- 
quency ( ~ / m ) $  = (k/m - X2/4)$. 

I t  is interesting to see here that the Gibbs statistical mechanics is applicable 
to ensembles of wealcly coupled damped oscillators, just as for the undamped 
ones; for in the phase space (Hi, Xi) Liouville's theorem holds and I? is con- 
served. Hence, for example, in a microcanonical ensemble mean values for 

" I  all1 indebted t o  Dr. Havas for correspondence o n  th i s  mat ter .  
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KERNER: QUASTUM MECH:\SICS 375 

any quantity of interest may be found, in a parallel with the usual computa- 
tions; and in a canonical ensemble, with a "heat" bath of damped oscillators, 
there is a modulus of the clistribution playing a role analogous to temperature 
and telling the preferred direction of flow of l? between ensembles with different 
moduli. There is, in short, a Itind of thermodynamics of macroscopic systems 
damped in their microscopic coordinates. 

Turning now to quantization we have that,  as a fundamental proposition 
stemming from the commutation rules, p may be represented as -ifiv, and 
that,  because only of the meaning of the Hamiltonian as generator of the 
motion, the Schrodinger wave function is controlled by ifil ,b = >I*, with H 
as in (6). That  fi retains its meaning of positional probability amplitude is 
indicated by maintenance of probability conservation (since H i s  Hermitian) 
and of the validity of Ehrenfest's theorem, to the effect that the quanta1 
mean position is Newtonian. 

For the oscillator, either by direct transformation of the wave equation or 
by use of the transformed Hamiltonians (7) or (8), the states corresponding 
to the undamped ones come out to be 

where the E, are eigenvalues of l?, fiw(n+$), and P4 = lnI</fi2 (I< > 0). The 
factor exp(4ht) guarantees the time-independent normalization of +,. These 
are stationary states in R-space: a measurement of G for them is certain to 
give the value E,. SO to speak the moving states are stationary with respect 
to the moving Hamiltonian G. The position-momentum ~~ncer ta in ty  product 
is AxAp = h(wo/w)(n+$) while the mean energy (iln.t?++kx2) becomes 
fiwo(wo/w)(n+$) exp(-At). Altogether the quantum motion, like the classical, 
winds down (or up, for increasing t),  /finI2 shri~llti~lg eventually into a delta 
function. So long as quantum mechanics is linlted to classical mechanics via 
Ehrenfest's theorem such a result is inevitable; the ground state of the un- 
clamped oscillator can not in the course of time be the favored one, as it 
might a t  first sight be expected to be. 

SIkIULTANEOUS F O R C I N G  A I D  DAMPING 

The forced and damped oscillator, controlled classically by 

has the Hamiltonian 

with Hamiltonian equations equivalent to  (9). 
The Schrodinger equation becomes C
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First put { = x exp(+At) and $ = U({, t)  ; then with U = 11 exp[- (,irn/4fi)r"], 
the transformed wave equation is 

- fi' a q ~ r  
-- av  
2m a{" + [i~C{%$ifiA- F exp(+At){] v = ifi- at , 

with I C  as previously defined. From this point on, with the problem reduced 
to an equivalent forced and undamped oscillator problem in {-space, we pro- 
ceed as before, placing 11 = W exp[{f (t)] and W = s({-w(t), t) to give (77 being 
r-w(t)) 

f i 2  a ' s  - --- - - - as 
2m a77 , + [ $ K ~ ~ + A ( ~ ) ] S  = ifi at , 

provided f ,  w satisfy 

-mw = ifif, 

and A is 

A = ?;fix +$.m$ -+Kw?. 

Finally, for K > 0, 

For I< < 0 (no oscillation a t  all classically in the damped but unforced 
motion) S is of continuum type. By (9) and (10) we identify 

where Lo represents the classical Lagrangian for the damped but unforced 
motion as a function in time of the damped and forced position and velocity. 

Altogether, for the $, that are in correspondence with the v,,, we get 

where po is mlo ex&), the momentum conjugate to xo. The probability 
density again moves as a whole in the classical rhythm, simultaneously de- 
forming by a scale change exp(+At) in the x-scale. Asymptotically for t >> A-I, 

1 $ , 1 2  becomes a delta function centered a t  .vo(t): for sufficiently long times 
the classical and quanta1 motions coincide. This does not, formally, contra- 
vene the uncertainty principle, for, as a calculation shows, the momentum 
becomes wholly indeterminate in this limit. On the other hand we recognize 
the gradual transition into the classical regime by the disappearance of fi 
from the commutatio~l rule 

x(ml)  - (mP)x = ifi exp( - At) 

connecting positio~l and mechanical momentum mi.  
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KERNER: QUANTUM MECHANICS 377 

Suppose the damped oscillator is hit by any transitory disturbing force 17, 
F( t )  e 0 (t > T ) .  The oscillator motion subseque~lt to time T decays classic- 
ally according to 

%or  = xo(T) exp(-+At) cos wt. 

If the oscillator is charged with charge e, we may interpret -yk as the 
,xpproximate force of radiation clamping, and may examine the Maxwell fields 
emanating from the quanta1 charge-current distribution (Schrodinger 192G). 
The charge density has a dipole moment exor; an  observer in the radiation 
zone ~vill see a dipole line centered a t  w with a width A ;  that is, he will see 
the classical result of a shifted and broadened line. Quite generally, in fact, 
the dipole field will be the same as that calculated classically. In  the case 
that the oscillator is clamped but not forced the quasi-stationary states #, give 
a nearly static charge distribution having no dipole or other odd moments. 
What radiation there is is confined mainly to the induction field; so the 
oscillator as it damps out creates variable fields predomi~la~ltly in its immediate 
neighborhood, i.e. is surrou~lded by a "virtual" field of varying energy 
content, one that can affect closely approaching particles but not distant 
ones. 
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