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A three-particle problem in one dimension

J. C. Martinez

Math and Science Centre, Ngee Ann Polytechnic, 535 Clementi Road, 2159 Singapore

(Received 4 April 1994; accepted 25 August 1994)

The problem of three particles of identical mass interacting with each other via a delta-function
potential is studied within a simple framework inspired by the 2-particle system. We discuss the S
matrix and the possibility of bound states arising for both bosons and fermions. © 1995 American

Association of Physics Teachers.

L. INTRODUCTION

The availability of simple models is a great aid in the
teaching and learning of quantum theory. The delta-
interaction between equally massive particles has appeared
in a number of introductory texts'? and advanced
monographs® and still continues to be relevant in current
research work.* In this article, we consider the case of three
particles each of mass m, in one dimension and interacting
with each other via a delta function potential. Although the
two-body problem is generally solvable, the n-body problem
has resisted efforts directed at it and the present case should
provide a beginner with a preview of some of the difficulties
inherent in the n-body case.

We solve completely in Sec. I the two-body problem in a
unified way by making use of Feynman’s transition kernel.’
This provides a unified approach to both the scattering and
bound states of the system which does not seem to have been
done previously from an elementary standpoint. Most calcu-
lations rely on the T matrix instead. In Sec. III, we study the
three-particle system by following our intuition for the time
development of the system and applying the calculational
rules of the two-body problem. Our treatment bears a faint
resemblance to the perturbative method which led to the
Feynman diagrams. As offshoots of our work, we look into
bound states, rearrangement scattering, and the effect of sta-
tistics in the succeeding two sections (IV and V). We feel
that the simplicity of the discussion should make it a useful
topic for an introductory course. The same problem was
originally treated by McGuire® who used a geometric con-
struction to solve it. An exactly soluble three-body atomic
model has appeared in this journal before.” Recently, interest
in the stability of a system of three arbitrary charges has
arisen in the context of few-body mechanisms.® The
n-particle case for the delta potential has been completely
solved by many authors.®*1% We refer the interested reader to
the literature for this very interesting problem.

II. THE TWO-BODY PROBLEM

We start by giving in this section a complete discussion of
the two-body problem. Consider two particles, each of mass
m, moving in one dimension and interacting via the delta
potential g8(x;—x,), g#0, where x; and x, are the posi-
tions of the particles. In terms of the center-of-mass coordi-
nate X and relative separation x, defined by

1
X=E(x1+x2), X=X17Xp oy
the Schrodinger equation of the system is
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where M =2m, u=(1/2)m. For our wave function we write
V(X,x)=AeKXe*ikx 3

where K=k, +k,, k=(1/2) (k;—k,) and #ik,, ik, are the
particle momenta. The first factor in Eq. (3) describes the
free motion of the center of mass (CM), while the second
together with the constant A describes the wave function
corresponding to the relative motion of the particles. Denot-
ing this latter factor by ¢..,(x), the boundary conditions may
be expressed as

#(+0)=¢(-0),
e )
$'(+0)=¢'(=0)= 73 $(0),
which specify that the wave function is continuous when the

particles touch and that there is a jump in the derivative of ¢
due to the delta interaction. These conditions yield

x e +Re ™ x<0
VEX)=T ik x50 ©)
with
re S po 1 _ 2h% 6
T 1+s’ Tit+s T igm ©)

for the transmission and reflection coefficients. It is straight
forward to verify that the following orthonormality relation
holds

(¢ka¢k')5jj;¢k¢; dx=8(k—k'). 7

A unified treatment of the system can be given by appeal-
ing to Feynman’s formula for the amplitude of the system to
evolve in time T(>0) from (X,x) to (X',x"):

KX ' x";X,x;T)

— 2 '\I’;,k(X,x)\yK)k(X’ ’xl)e—i(EK+Ek)T/ﬁ’
K.k

=2 WEOW(X e BT G (x) delx e EL,

K k

®)

where Egx=[£%2(2m)IK?, E,=[h%/2(1/2m)]k* are the
CM and relative motion energies.” The first sum on the sec-
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Fig. 1. Integration contour in the  plane.

ond line of Eq. (8) is just the amplitude for a free particle of
mass 2m to go from X to X’ in time T. Using the prescrip-
tion = x— [(dK/21) we find®

2 ‘I’;(X)\PK(X’ )e—iEKT/h
k
m " im(X -X)? ®)
“\minr) P RT
To evaluate the second sum, let us suppose for a moment
that x<0 and x' >0. Then ¢,(x) describes an incident plane

wave from the left of the origin, while ¢,(x") is the trans-
mitted plane wave to the right of the origin. From. Eq. (5)

S 1
b1 () dulx) = e -x>( 1- m) (10)
and introducing the quantities
a=-, a=a'?’(x' ~x),
a2 (11)
B=i %—, t=ia'w,

we may write the second sum in Eq. (8) as
1 Jw dhe— {BRIMT yik(x' ~x)
27 ) _w

al/ZB do 5
: —aw+ ‘T
+i 27 Jc o+ B € ’ (12)

where C is the solid line paralle] to the imaginary axis in Fig.
1. By the residue theorem

J’ dw
cw"‘ﬁe

— 277i X Resid jim dw
=2ZT €siaue . w+ﬂ

—aw+ 0T

e—aw-f—sz. (13)

The residue is the contribution coming from the simple
pole at w=— g which occurs provided g<0, i.e., the delta
potential is attractive (since C is closed by the imaginary
axis and the lines at w= *i»), We find
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. _ 2
Residue=e 2« 7| _

-8B
2
mg ,mg
=exp[ ~ 52 (x -—x)}exp{z YT T} (-2
(14)
which corresponds to a bound state of energy

~[(mg)/(4%%)] (the coefficient of —iT/# in the exponent)
and a normalized wave function of

m|g|\'? _mlgl| '
2}’;2 €Xp '_2ﬁ'2‘ X X

(the time independent factor).

The remaining integral may be expressed in terms of the
error function by converting the denominator into an expo-
nential

fiw dw
—joo w+ﬁ €

=J-mdﬂ e—u(w+ﬂ)fm dw e—aw+a)2T
)

—jo

—aw+w?T

_ ‘i?TCﬂzT+aB el‘fC(,BTI/2+ %aT_ 1/2)’ (15)

where

erfc(y)EZw‘l/zj e dx. (16)
y

Thus our final result is

> du(x") bj (x)e ETlh
k

. @ 1/2 1
=(417T) e"p( TaT “1/2“)
— 1 '8 exp(B*T+ap)erfc(BTV?+ }aT™11?)

+a'2B exp(—~ Ba+ B*T)6(—g). 17)

The general case for any x,x’ is done similarly. Our result
will be exactly the same as Eq. (17) except that our definition
of a in Eq. (11) is now replaced by

a=a'(|x'|+x|). (18)

Equation (17) has been obtained before b¥ a number of
authors who used the path integral approach.!'~!* The exten-
sion of Eq. (17) to any number of delta potentials and one
particle is straightforward. This has been done by Bauch!!
and Crandall'*

HI. THE THREE-PARTICLE PROBLEM

Section II provided us with the basic elements for studying
the three-particle case. To deal with this problem we stipulate
first that each particle should collide with the other two.
Since the particles have identical masses and interaction
strengths, momentum conservation assures us that any two-
particle collision has only two possible outcomes for the mo-
menta: Either the particles retain their respective momenta or
they exchange momenta. Thus no new momentum is ever
generated in a collision although a switch might occur.
Hence, we will require that no pair has zero relative momen-
tum at any time. Clearly the collision cannot be inelastic.
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Fig. 2. Events in the collision of particles 1, 2, 3.

For a given two-particle collision event the incident wave
function is given by

q,fjc) = KX gikx — ok X1 pikyXy (19)

Particles are identified by their momenta. From Eq. (5) the
scattered wave function is

\pg)=eiKX(Tueikx+Rlze—ikx)

— leeiklxleikzxz+R12eik1x2eik2x1’ (20)
_ S ~1 h2(ky—k,)
T12_1+s12’ R12—1+s12’ $127 igm
21

The coefficient T, gives the amplitude for the exchange of
positions of particles 1 and 2, while R;, given the amplitude
that the original order of particles is retained after the colli-
sion.

The entire three-body scattering process may be described
as follows. Label the incident particles 1, 2, 3 from left to
right. A first collision takes place between particles 1 and 2
with particle 3 as spectator. Then follows a collision between
particles 1 and 3 with particle 2 undisturbed. Finally particles
2 and 3 collide in the presence of particle 1. This description
is depicted schematically in Fig. 2. Starting with the incident
wave function

3)_ ikyxq pikoxy ik
\I’Enc_e' 1¥1gika¥2gik3x3 (22)
the outcome of the first collision is

‘I’S)[Fig. 2(3)] - eik3x3{Rlzeik2xleik1x2+ leeiklxleikzxz}
(23)

and after the second collision we find
W
VOlFig. 2(b)]
- eikleR12{T13eik1xzeik3x3 +Rl3eik1x3eik2x3}
+ eik2x2T12{T13eik1xleik3x3 +R13eik1x3eik3x1}' (24)
e final result for these collisions is
The final 1t for th 11
3) _ ikyxy pikyxs ik
V)= ethixigitrr*s®aT )T 3T,
+ eiklxleikzx::,eiksszlzT]3R23
+e*1¥3eik2%2e 371 (TR 13 T3+ R 1R 13R23)
+ek1x3et®2%10%#3%3(T 1, R 3R 3+ R15R13T23)
+ eiklxzeikleeik3X3R12T13T23

+eiklxzeik2x3eik3x1R12T13R23 . (25)
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Table I. Summary of Eq. (25).

Particle
Wave function Amplitude order
e':"l"le':"l"2e':"3"3 T13T13T53=515,55A7! 321
ek1x1gtkarsgiksny T3 T 3Ry =—515,A7! 231

eik1xagikyxy giksx T12R3T33 R R 3Ry =—(1+s385)A7 123
T12R13R 3+ R1pR 13T 23 = — (51 +55)A 7! 213
R12T13T23= _S3S2A‘1 312
RypT13Ry3=5,A7" 132

eikIX3eikleeik3x2
eikleeiklxleik3x3
eikl"zeikz"seik‘jxl

One can see the intermediate processes involved in arriving
at the outcome. For instance, the first term of Eq. (25) de-
scribes the transmission of 1 through 2, then 1 through 3 and
finally the transmission of 2 through 3. In this process the
original order 1 2 3 is altered to 3 2 1. All this information is
summarized in Table 1, where we have introduced the quan-
tities

A2 (ky—ky) A2 (ky~k3)
S|=—————, §p=—F——,
igm igm
A2 (ky—k3)
S e (26)

A=(1+s5)(1+55)(1+s3).

We can gather from Table I that the probability for particles
1 and 2 to exchange is the same as that for particles 2 and 3
exchanging. The results summarized in Table I are usually
called the S-matrix elements of the scattering problem.

IV. BOUND STATES

The discussion of Sec. III centered on pure scattering. We
study here the possible appearance of bound states. Based on
Egs. (13) and (14), bound states appear at the poles of the
transition amplitude. Examination of Eq. (25) or Table 1
shows that this is so when any of the s is equal to —1. But it
is not possible for all three to be simultaneously equal to —1
because of the constraint s;+s;=s,. Moreover, we cannot
have s, =s,=—1 since that would imply s;=0 and hence
particles 2 and 3 would have zero relative momentum be-
tween them, contrary to the stipulation given at beginning of
Sec. III. Thus the case of two s’s both having value —1 is
specified by s;=s;=—1. In the CM frame where
ki+k,+k;=0 we find

and the bound state wave function can be written as

k1=k3= _lg,

4
ex —-2-{|x1—x3|+|x1—x2|+|x2——x3|} (28)

corresponding to a three-particle bound state of energy — g2

If only one s is equal to —1 (for definiteness let this be s5;)
then we have the scattering of a free particle (3) against a
two-particle bound system. The outcome of this scattering
can be a simple elastic one, or a rearrangement in which
particle 3 replaces either particle 1 or 2 in the bound system,
or a crack-up in which there is no bound state in the final
system. This last possibility is not allowed in our case be-
cause of momentum conservation. Thus there are only the
first two possibilities and these are indicated in Fig. 3. In
drawing these diagrams it is necessary to include only dis-
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Fig. 3. Events in the collision of a 2-particle bound state with a free particle.

tinct processes. For instance, in Fig. 3(a) the scattering of 3
off 1 first and then off 2 next, is not a process distinct from
the one depicted. With s;= —1 the corresponding amplitude
are

§3 S, S2_1
s3+1 s,+1  s,+1°

3(a): T13Tp3=

3(b): RTyym— 2= L (29)
) 13523 52+1 S3+1 S3+1’
-1 Sa -1

3(c): R3pTp3=

s3+1 s,+1 - s3+1°
where in the last result we used the fact that |s,/(s,+1)|=1
[see (30) below]. In the system in which &; +k,=0 we have

ky 1 ks 1
j = =i (30)

V. FERMIONS

For spin 1/2 fermions much of the above analysis still
applies but we must take statistics into account. First of all, if
the particles are all spin-up (or down) then the delta interac-
tion has no effect on them because the exclusion principle
prevents any two from being together. The case of a pair of
spin-up particles and one spin-down is more interesting.
Analogous to Eq. (22), the wave function in this case is

ikz.Xz eikzX3

1. le
= — et*1%1| | .
v /_2 € etk3x2 etk3X3
1 ik ik ik ik ik ik
= — (e 1*1e 272 K373 — piR1%1 0 X2X3 1 3*2), (31)

where we assume that the particles 2 and 3 are both spin-up
while particle 1 is spin down. If we have initially a bound
state it can only be between 1 and 2 or 1 and 3. A rearrange-
ment scattering such as that Figs. 3(b) or 3(c) is not permit-
ted by the exclusion principle. Hence there can only be an
elastic collision for the case of a bound pair and a free par-
ticle; ionization is not possible.

The first term of Eq. (31) gave us the entries of Table I. A
similar calculation for the second term leads to Table II. In
this second table the initial order is 1 3 2 and indices refer to
the momenta (not the particles). The outgoing wave function
is just the sum of the entries of the two tables. Hence,
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Table II. S-matrix elements of the second term of Eq. (31).

Particle
Wave function Amplitude order
e'tF1gikarsgitsxs T,,T13Ry3=—515,A7! 321
et171tkatsgiksns T1,T13T23=515,8;47! 231
ek1xagitarzgitsxy Ry;T 3R, =5,A71 123
etrmsgtharigikse; RipT13Ty3=s5,53471 213
e'tixagikom1gthaxs RypR 3Ty + TR 3Ry =5,A"" 312

etrragitragitsn Ry2R13R2+ T1aR13To3=—(1+sys3)A70 132

ikox ikyx
S8 e'"2*2  el*2%3
\I;(3)_. 1 12 ikyxy

2 Q¥sp(i+sy) ©

I S
V2 (1+51)(1+s3) ¢

eik1X2

eik3x2 eik3X3

.k eiklxz eik1x3
11 le A X
elk3X2 elk3X3

1 1 . eik1x3
— e Lik3xy . 2
NN 2

eikzXz eikzX3

VI. CONCLUSIONS

We have studied a system of three equally massive par-
ticles interacting via a delta potential of identical strength for
each pair. For bosons, it was found that no new velocities are
generated as a result of scattering and that the model does
not allow inelastic scattering between one particle and a
bound two-particle pair, although a rearrangement can take
place. There is one bound state for three particles in the case
of an’ attractive potential. The scenario is more complicated
for fermions. For instance, if all are spin-up then the delta
potential is ineffective; if a fermion scatters off a bound pair,
no rearrangement is possible.

We did not succeed in finding a closed form of the three-
body kernel analogous to Eq. (17). It might be possible to
obtain one, perhaps along the lines of Sec. II and with the aid
of the discontinuity calculus elaborated on by Crandall.!*

ACKNOWLEDGMENT

The support of the Lee Foundation is gratefully acknowl-
edged.

'K. Gottfried, Quantum Mechanics (Benjamin, New York, 1966), pp. 51,
163.

’P. J. E. Peebles, Quantum Mechanics (Princeton University, Princeton,
1992), pp. 393-6.

3). Negele and H. Orland, Quantum Many-Particle Systems (Addison-
Wesley, Reading, MA, 1988).

*G. Gat and B. Rosenstein, “New Method for Calculating Binding Energies
in Quantum Mechanics and Quantum Field Theory,” Phys. Rev. Lett. 70,
5-8 (1993).

°R. P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals
(McGraw-Hill, New York, 1965), p. 88.

°J. B. McGuire, “Study of Exactly Soluble One-Dimensional n-Body Prob-
lems,” J. Math. Phys. 5, 622—636 (1963).

R. Crandall, R. Whitnell, and R. Bettega, “Exactly Soluble Two Electron
Atomic Model,” Am. J. Phys. 52, 438442 (1984).

8A. Martin, J.-M. Richard, and T. T. Wu, “Stability of Systems of Three
Arbitrary Charges I. General Properties,” CERN-TH 7273/94 (to appear).

J. C. Martinez 167



%E. Lieb and W. Liniger, “Exact Analysis of an Interacting Bose Gas. I. The
General Solution and the Ground State,” Phys. Rev. 130, 1605-1616
(1963).

10C. N. Yang, “Some Exact Results for the Many-Body Problem in One
Dimension with Repulsive Delta-function Interaction,” Phys. Rev. Lett.
19, 1312-1315 (1967).

1D, Bauch, “The Path Integral for a Particle Moving in a Delta-function

The Ricci tensor of a diagonal metric
J. B. Boyling

Potential,” Nuovo Cimento B 85, 118-123 (1985).

128, Gaveau and L. S. Schulman, “Explicit Time-dependent Schrodinger
Propagators,” J. Phys. A 19, 1833-1846 (1986).

B3S. V. Lawande and K. V. Bhagwat, “Feynman Propagator for the
é-function Potential,” Phys. Lett. A 131, 8-10 (1988).

4R, Crandall, “Combinatorial Approach to Feynman Path Integration,” J.
Phys. A 26, 36273648 (1993).

Department of Applied Mathematical Studies, University of Leeds, Leeds, LS2 9JT, England

(Received 16 May 1994; accepted 13 July 1994)

Formulas in suffix notation are obtained for the general diagonal component and the general
off-diagonal component of the Ricci tensor of a pseudo-Riemannian manifold of arbitrary dimension
with diagonal metric. Two applications to general relativity are briefly considered. © 1995

American Association of Physics Teachers.

L. INTRODUCTION

To obtain the standard solutions of the Einstein field equa-
tions, such as the Schwarzschild exterior solution or the
Robertson—Walker cosmological model, it is necessary at
some stage to compute the components Rgs of the Ricci
tensor corresponding to a space~time metric (g,g) With
some degree of symmetry. This is usually done by first work-
ing out the Christoffel symbols

Fzﬁ=%gya(—gaﬁ,5+gﬁ5,a+g5a,ﬁ) (1)

and then using the formula

R36=Fgé,a_rga,8+r SF E ge’ (2)

where the commas denote partial dlfferentiation with respect
to the local coordinates (x*). This is a very laborious pro-
cess, only slightly alleviated by rewriting Eq. (2) in the form

Rgs=|g| " V2(18]"*T 35) o~ (Inlg]) gs—Tal'5e» (3

where g=det(g,g). However, in the two classic cases men-
tioned above, the conventional local coordinate systems are
such that the metric is diagonal, ie., g,=0 for a#B, so
some simplification should be poss1ble

In fact, as long ago as 1933, Dingle' gave explicit formu-
lae for the components of the closely related Einstein tensor

% (gayR a-y)g.BS

valid for any space—time metric. Unfortunately, he omitted
to use suffix notation for labeling the (diagonal) components
of the metric, and he therefore needed ten separate formulas
for the ten independent components, which, as Synge? has
remarked, “are naturally rather formidable.” It has been

Ggs=Rpgs—
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pointed out by Rindler® that one really only needs two for-
mulas, one for the diagonal components and one for the off-
diagonal ones. He therefore derives explicit formulas for Ry;
and R,,, and indicates that the remaining formulas may be
obtained “by making the obvious permutations on these
two.” He also sets the formulas out in such a way that one
can easily read off corresponding formulas for manifolds of
lower dimension.

We offer here two formulas in suffix notation for the off-
diagonal and diagonal components respectively of the Ricci
tensor in a pseudo-Riemannian manifold of arbitrary dimen-
sion with diagonal metric. These enable one to find all the
components easily by direct substitution. In particular, the
relatively simple formula (8) for the off-diagonal elements
makes short work of the otherwise tiresome chore of check-
ing that R g5=0 whenever B+ &in the two classic cases men-
tioned previously.

It could be argued that this is a pointless exercise, since
the “old-fashioned” tensor approach to general relativity has
now been superseded by Cartan’s approach in terms of exte-
rior differential forms.*> This not only gives deeper insights
into the differential geometry of general relat1v1ty but also
provides a superior calculational techmque for problems
such as those considered here. The snag is that most students
find this approach difficult to grasp in the initial stages, so
that constraints of time often necessitate the more traditional
approach. In such cases the formulas derived here should
help to shorten the calculations.

II. CHRISTOFFEL SYMBOLS

Let us abandon the summation convention, and write
Mo=31n(lg,,l) for a=1,2,. @
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