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We show that the list of analytically solvable potentials in nonrelativistic quantum mechanics can be
considerably enlarged. In particular, we show that those noncentral potentials for which the
Schrodinger equation is separable are analytically solvable provided the separated problem for each
of the coordinates belongs to the class of exactly solvable one dimensional problems. As an
illustration, we discuss in detail two examples, one in two and the other in three dimensions. A list
of analytically solvable noncentral potentials in spherical polar coordinates is also given. Extension
of these ideas to other standard orthogonal coordinate systems as well as to higher dimensions is

straightforward.
I. INTRODUCTION

The analytically solvable potentials in nonrelativistic
quantum mechanics have pedagogical value. The explicit ex-
pressions for the eigenvalues, the eigenfunctions, and the
scattering matrix in such examples give insight in the physi-
cal concepts of quantum mechanics. Besides, some of these
may have physical applications; some could be used as the
unperturbed part of a more realistic Hamiltonian. Most of the
analytlcally solvable examples that are found in the text
books,! however, are either one dimensional, or are central
potentials which are essentially one dimensional on the half
line. The noncentral potential that is sometimes discussed in
the text books? is the anisotropic harmonic oscillator. The
purpose of this paper is to present other examples of analyti-
cally solvable noncentral potentials in two and three spatial
dimensions. This is accomplished by considering those non-
central potentials (in spherical polar coordinates) for which
the Schrodinger equation is separable in each of the coordi-
nates and reduces to three uncoupled one dimensional equa-
tions that can be exactly solved. Thc method is applicable to
other orthogonal coordinate frames,” and may be extended to
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higher dimensions. In this paper, two examples, one in two,
and the other in three dimensions, are treated in some detail.
A list of solvable noncentral potentials in spherical polar
coordinates in three dimensions is also given.

It is worth pointing out that these potentials may not only
be of academic interest. For example, it has been known for
a long time* that the exact solution of a potential in two
dimensions can be directly mapped to an exact solution of a
corresponding three-body problem in one dimension. In fact,
the particular example in two dimensions discussed in some
detail in Sec. II has some novel application in solvable many
body problems also. Hopefully, a few applications of the
noncentral potentials in three dimensions to some physical
problems may be forthcoming.

The plan of the paper is as follows: In Sec. II, a two
dimensional noncentral potentlal is discussed in detail, to-
gether with its application in a novel many body problem.
Next, in Sec. III, a new analytically solvable three dimen-
sional example is presented. In the last section, other ex-
amples in both two and three dimensions are listed. It is
worth pointing out that all these may also be solved alge-
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braically by using the concept of shape invariant potentials
within the formalism of supersymmetric quantum
mechanics.’

II. SOLVABLE NONCENTRAL POTENTIALS IN
TWO DIMENSIONS

Consider a potential V(r,¢) in polar coordinates of the
form

. U(4)
V(r,d)=U(r)+ 7 (2.1)
Such a form is classically integrable,® and has two constants
of motion. The Schrodinger equation for the eigenvalue
problem is (=1, 2M=1)

# 19 1 & N U(o)
T rar PRt Y=\ En=U(r) = —7=| ¥y
(2.2)
On writing the eigenfunction ¥ ,,(r,¢) as
1
Y(r,¢)= 7 u(r)K(¢), (2.3)
r
the radial equation may be written as
& . (m*—=1/4)
—d—rZ+U(r)+T u(r)=Eu(r). (24)

In the above, m? is the eigenvalue of the angular equation

d2
(—W+U(¢))K(¢)=MZK(¢)- (2.5)
The two constants of motion in the quantum problem are the
eigenvalues E and m>. An interesting example of the angular
potential is given by

U(¢)=G/sin*(p o). (2.6)

This potential is actually a special case of the more general
Poschl-Teller potential that is treated in detail in Fligge’s
text” on quantum mechanics. We shall nevertheless solve this
simpler problem here to clarify the quantisation procedure.
Note that in general, from physical considerations, the poten-
tial should be single-valued and periodic,

U(¢)=U(¢+2m). 2.7)

This puts the restriction that the parameter p occurring in Eq.
(2.6) be an integral multiple of 1/2. We will infact take p to
be an integer so that the eigenfunctions are necessarily pe-
riodic [see Eq. (2.15)]. Moreover, since the potential U( ¢) is
singular, the wave function must vanish at ¢=0 and ¢==/p
for a repulsive potential, and it is sufficient to solve the equa-
tion in the range 0= ¢=< /p. Thus the range of ¢ is broken
into disjointed sectors, with the boundary condition on the
wave function

K(¢=0)=K(psp=m)=0. (2.8)

Within this range, the wave function should be smooth with
no discontinuity in its derivative. At this point, it is instruc-
tive to examine the behavior of K(¢) as ¢—0, noting that
U(¢) given by Eq. (2.6) dominates the Schrodinger equation
in this situation. Equation (2.5) then reduces to

2
(‘W+?T¢’)K(¢)=°'
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The solution of this equation is K( ¢) = ¢“, where direct sub-
stitution shows that a has to satisfy a®— a—G/p*=0. Only
the positive root is allowed in view of the boundary condi-
tion (2.8), giving
1,1 ( . 40)1/2
a=—-T =
r'g

5%5 2.9

Keeping in mind Eq. (2.8), it is natural to assume, for the
entire range 0= ¢=<7/p, the form

K(¢)=(sin p¢)°R(¢), (2.10)

where a is given by Eq. (2.9), and R(¢) is a smooth function
which is nonzero and finite at ¢=0. It is further convenient
to make the substitution

t=1[1-cos(pgh)]

in Eq. (2.5) when U(¢) is given by Eq. (2.6). Some straight-
forward algebra then yields that R(¢) satisfies the equation

1+ 21+
-2~at§a

, m
—|a —?R(t)=0.

(2.11)

t{1-HR"(5)+ R'(¥)

(2.12)

In the above, a prime denotes differentiation with respect to
the variable ¢ This is precisely the form obeyed by a hyper-
geometric function” in the variable ¢. Thus the wave function
K(¢) is given by

m m +1 1 .
a+ ;,a ;,a -2—,2( —cos po)|.
(2.13)

The hypergeometric function as given in Eq. (2.13) is in
general not an acceptable wave function, since it diverges at
p¢=. For it to be well behaved, the series has to terminate
to a finite polynomial, leading to the condition that the argu-
ment («—m/p) is a negative integer or zero, i.e.,

n=0,1,2,- .

K(¢)=(sin p@)°F

m=p(a+n,), (2.14)

Note again that m in general is not an integer, but the above
condition on m yields the discrete quantum number n, cor-
responding to azimuthal quantization. Further simplification
results by noting that the Gegenbauer polynomial8
C,‘,’l(cos pp) is proportional to F[ni+2a,—n;,ats

3(1—cos p¢)]. The function Cf,'l(cos p@), defined in the

range 0<p¢=<r, is a polynomial of degree n,. Thus the
acceptable (unnormalized) angular wave function labeled by
the quantum number s, is given by

K, (#)=(sin p$)*CZ (cos p&b).

The corresponding eigenvalue m? of Eq. (2.5) is defined by
the discrete spectrum

(2.15)

m*=p*(a+n;)?, n;=0,1,2,-- . (2.16)

This solution was given by Calogero® while solving the three
body problem in one dimension with a pairwise inverse
square potential. This will be discussed presently.

The reality of the parameter «, as defined in Eq. (2.9),
implies that 4G/p*=—1. In the radial Eq. (2.4), m*=1, and
analytical solutions may be obtained if the potential U(r) is

A. Khare and R. K. Bhaduri 1009



taken to be_simple harmonic or of Coulomb type. For ex-
ample, for U(r) = }w?r?, the eigenfunctions of Eq. (2.4) are!

un,nl(r)=r"’“/ze""’2’4L;,"(%wr2), 2.17)

with n=0,1,2,... and m is defined by Eq. (2.14) for
nll———0,1,2,--- . The corresponding eigenvalues are given
by

E,n=2nt+m+1l)o. (2.18)

One may now ask if there is any problem of physical
interest with a noncentral potential of the type discussed
above. As mentioned already, Calogero* considered a model
three body quantum problem in one spatial dimension with
the Hamiltonian

S - LS 3
H=2 ——+—=2 (xi—x)*+ g2 (x;—x;) "%
=1 9% 12i<j s 2 i<j C

(2.19)

The three particles, after the center-of-mass motion is fac-
tored out, have two independent degrees of freedom, which
may be mapped on to the (7, ¢) coordinates of a particle in a
noncentral potential. To be more specific, define the Jacobi
coordinates

X=3(x;+x,+x3),

(x1—x,) (x1+x3—2x3) (2.20)

V2 Ve

The potentials in Eq. (2.19) depend only on the relative co-
ordinates x, y, and therefore the wave function in the center-
of-mass variable X is a plane wave that can be separated out.
A mapping of the problem to the motion of a particle on a

plane in the field of a noncentral potential may be done by
defining

x=r sin ¢,

xX= y:

y=r cos ¢,
r2=3(x1—x)2 +(x3=x3)%+ (x3—x1)],

with the range of the variables 0<r=ow, 0ss¢=<2. A little
algebra shows that

(x,=x)=12 r sin ¢,

(2.21)

(x3—x3)= 2 r sin(¢p+2m/3), (2.22)
(x3—x1)= \/E r sin(¢p+4/3).
Furthermore, by using the trigonometric identity
3
> cosecq{ p+2(m—1)m/3]=9 cosec’(3¢), (2.23)

m=1

it is straightforward to verify that the problem reduces to the
noncentral potential (2.1) for a particle on a plane, with

- 1 9 g
- 2 =

U(r)—4 wr”, U(¢)—zw. (2.24)
In the range 0<d¢=<(n/3), the solution is then given by Eq.
(2.16) with p=3, and the wave function vanishing at the
edges ¢=0 and #r/3. Within this range, Eq. (2.22) shows that
the spatial ordering of the particles is given by x;=x,>x;.
Because of the singular nature of the potential U(¢)/r?, the
particles cannot cross, and the ordering is fixed. In another
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sector, e.g., w3<¢=<2n/3, Eq. (2.22) shows that
X1=Xx32X,; it is as if the coordinates x, and x; have been
interchanged. The wave function K, (¢) may be then ex-

tended to this region from the original range by imposing the
appropriate symmetry requirement due to the exchange of
particles 2 and 3. The interested reader may look up these
details in Calogero’s paper.*

This somewhat academic example becomes more signifi-
cant when it is realized® that the N-body problem (N>3)
with the Hamiltonian given by Eq. (2.19) is exactly solvable
(though by a different method). Sutherland,!® in a variation
of the theme, solved the problem by considering an inverse
square pair potential between particles on a circle, with the
interaction summed over all possible windings

o 2
Vir)=g 2 (r+nL)_2=gL—27T—

o ™7 s
& sin| -~ . (2.25)
Here, r is the distance between the two particles on a ring of
circumference L, so that sin(7r/L)=sin(¢/2), where ¢ is the
angle subtended at the center of the circle by the pair. Suth-
erland showed that the N-body Hamiltonian

N -
—‘92 + g_f‘wz sm(ﬁ) i
o"xi2 L i<j 2

H=-2

i=1

(2.26)

is exactly solvable with periodic boundary condition. Here,
the coordinates x; are measured along the ring, and
¢;;=2m(x;—x;)/L. The Hamiltonian (2.26) is an example
with a pairwise potential that gives rise to nontrivial correla-
tions in the ground state. For a periodic boundary condition,
direct substitution shows that the ground state wave function
is

a

mlu=x) 2.27)

sin I

v=]I

i<j

with a given by Eq. (2.9), where (4G/p?) is replaced by 2g.
The corresponding eigenvalue is given by
1,  N(N*-1)

EN=§ a’m — Iz

(2.28)
where N denotes the number of particles.

Although the many body problem with the inverse pair
potential is an example of a fully integrable system, there
appears to be a deep connection between the expression of
|\F|? obtained from Eq. (2.27), and the quantum spectral dis-
tribution of systems that are chaotic.'®!! A discussion of this
fascinating connection is beyond the scope of this paper. The
many-body models of the Calogero—Sutherland tylge have
been popular in recent times in statistical mechanics™“ and in
the physics of spin chains.'

ITII. SOLUBLE NONCENTRAL POTENTIALS IN
THREE DIMENSIONS

In spherical polar coordinates, a noncentral potential of the
form

V(6)

- U
V(r,0,¢)=U(r)+—r2—+ (¢)

2 a2 p

r° sin“ 8’ 3.1)

is classically integrable,® with three constants of motion. The
Schrodinger equation is also separable in the coordinates,
and with suitable choices for the potentials U(r), V() and

A. Khare and R. K. Bhaduri 1010



U(¢), the uncoupled equations can be exactly solved. The
Schrodinger equation for the wave function W(r,8,¢) is
given by
aZ\If+2 ar\ 1 aZ\If+ tea\If
BT B A T AT
——7—1 v =(E-V)¥ (3.2)
" rZsin? 9 9¢? =( A )

It is convenient to write ¥(r,8,¢) as

H(6
V(r,0,¢)= ur) @%K(qﬁ)-

(3.3)
r
Substituting Eq. (3.3) in Eq. (3.2), we obtain

1d* . 1],1 1d2H+V0
T AT M P A

1 ) 1 1 d2K+U g
—Zoosec 0+;2_si;2—é —EW ($)|=E.
' (3.4)

Again, let K(¢) obey the same equation as Eq. (2.5),
2

4K )
~ it TUDK($)=mK($). (3.5)

Substituting this in Eq. (3.4), the ¢ dependence in it is elimi-
nated, resulting in the equation,

1d2u+ i L1 d2H+V0
IR A A Ml i T
1
+(m2—4—)cosec2 0}=E. (3.6)
Next, let H( ) obey the equation
4H A T 2
—W+ V(ie)+|m —g | cosec 8lH(6)=I"H(®), 3.7)

where / need not be an integer. A further substitution of this
equation in Eq. (3.6) then completes the separation of the
variables, giving the radial equation,

2 (P-1/4)

— P.J,. U(r)+ — u(ry=Eu(r). (3.8)

Note that this is exactlg the same as Eq. (2.4), except that m?
has been replaced by I°. The three equations (3.5), (3.7), and
(3.8) may be solved analytically by choosing the potentials
suitably.
As an illustration, we consider the potential
w? ) é C D
Vl(r,0,¢)=—4—r +:2‘+ +r2

r? sin? @ cos® 6

+ ¢ + F
r? sin® @ sin”> pd  r? sin® 0 cos® p’
3.9
where w, 8, C, D, G, F, and p are parameters, with p being an
integer as before. There are some restrictions on the other
parameters (to be given later) arising from the acceptability
of the wave function. Comparing Egs. (3.9) and (3.1), we

obtain the Poschl-Teller potential hole that is solved in
Fliigge’s text,?

1011 Am. J. Phys., Vol. 62, No. 11, November 1994

U(¢)=G cosec’ p¢p+F sec? po. (3.10)

Note that this potential is highly singular at ¢=0 and p¢
=1/2. Thus the range for K(¢) is 0<p¢=<n/2 with the
boundary conditions [cf. Eq. (2.8)]

K(¢=0)=0=K(pd=m/2). (3.11)

With the above boundary condition in mind, it is natural to
take the form

K(#)=(sin p¢)*(cos p$)’R(¢), (3.12)

in Eq. (3.5) with U(¢) given by Eq. (3.10). Here, & and 8
are real positive constants and R(¢) is a smooth function
which is finite and nonzero at ¢=0 and p¢= 7/2. This fixes
a and B

a=}+ 5 (1+4G/pH)'7,
3.13
B=1+ 3 (1+4FipH'2. 1)

The complete
(n1=0,1,2,...)
2
m
p—2=[2n1+a+ﬁ]2.

eigenspectrum is now given by

(3.19)

The unnormalized wave function in the ¢ coordinate is given
in terms of the Jacobi polynomial P;‘,‘l—” 2B-172 of degree n,

K(¢)=(sin pg)*(cos pg)?P;~ 2P 12(cos 2p ).
(3.15)
Having solved the eigenvalue m? of the ¢ part, the Schro-

dinger equation (3.7) for the @ variable can be taken up.
Again, comparing Eqs. (3.1) and (3.9), we see that

V(8)=C cosec?* 6+D sec’® 6. (3.16)

The Schrodinger equation for H,(6) is
’H 2 2 2 =72
BT +[(C+m{—1/4)cosec® 8+D sec” d]JH=IH.

d
(3.17)

Note that as in the ¢ case, this potential V;(#) is singular at
6=0 and 6=m/2. Thus Eq. (3.17) is solved in the range
0= #=m/2 with the boundary conditions

H(6=0)=H(6=w/2)=0. (3.18)

Since Eq. (3.17) and the boundary conditions (3.18) are iden-
tical to those discussed for the ¢ variable, the eigenvalue
spectrum and the eigenfunctions can be written down imme-
diately. These are given by

2=[2n,+a+ B)? (3.19)
with n,=0,1,2,--- . In the above equation,

Ya= +(C+m?)?,

i 3.20

B=i+E(1+4D)", (320
and
H, (6)=(sin 6)*(cos 0)BPE;;”2"H/2(sin 26). (3.21)

Note that in general there is no degeneracy in / except for
C=0, and then it is given by

A. Khare and R. K. Bhaduri 1011



Table 1. The three solvable potentials U(¢) are given in column (1). The eigenvalues m? of Eq. (3.5) are listed

in column (2), and the corresponding eigenstates in column (3). Case (i) is discussed in detail in the text.

U(e) m? K(®)
() G cosec’(p )+ F sec’(pg)  p*(a+B+2n;) (sin p $)*(cos p¢)*
p=123, 20 = 1 + J1+4G/p? X P~ 12E~12) cos 2p )
28 =1 + J1+4F/p? n,;=0,1,2,-
2
(ii) G cosec®(p#) +F cot(p &) Pla+n)- — (sin pg)@ews
(a+tny)

p=1,2,3, 2a = 1 + J1+4G/p? folI“‘"‘“”’_"_”IH”(i cot peh)
. F A
P = (a+ny)
(iii) G cosec’(p ) (A+n,p)? (1~cos p@) ™ M2(1+cos p )2
—F cot(p ¢)cosec(p $) G=A>+B>-Ap X PGTA 12512 cos p)
p=135,... F=B(2A-p) s=A/p, \=B/p

IP=p(2n+1)+(2ny+1)+ VD +1/4+ JF+p*/4

+JG+pY4. (3.22)
Finally, the radial Schrodinger Eq. (3.8)
du |(0*? 6+1°—1/4
- P+ y) ) u=Eu (3.23)

is to be solved, and this is exactly of the same form as Eq.
(2.4). The solutions may be labeled by the radial quantum
number 7, and the angular quantum numbers n; and n, that
define [? in Eq. (3.19)

Irew) v
(ry=r(Vo+E+12) exp(—i—wrz)Ln‘SH (3wr?).

un n,,.n
e R/
(3.24)
The corresponding eigenvalues are given by
Epp i, =[2n+1)+(6+1)]0, (3.25)
where 12 is given explicitly as
1 p?
I’=|(2n,+1)+\/D+ T CH VF+ T
X 2)1/2]2
+\/G+—Z+p(2n1+l) } ] : (3.26)

Thus the complete eigenfunction of the noncentral potential
(3.9) is given by the form (3.3), with u(r), H(8), K(¢) as
defined by Eqs. (3.24), (3.21), and (3.15), respectively. Note
that there is degeneracy in the problem when either & or C
(or both) are zero. The maximum degeneracy is obtained
when both & and C are zero, and the eigenspectrum then
reduces to the form

Eyn n,=2ntl+1)o,

2n,+1 +\/D+1+\/F+p2+\/ +p2
(2n2+1) 3 TtNGr T

. (3.27)

where

l:

+p(2n1+ 1)

Since degeneracy is usually associated with some symmetry
in the system, it would be interesting to enquire about the
extra symmetry in the problem. For the case p=1 (and 6=C
=0), the symmetry is clear. In such a case, the potential is
simply the spherically symmetric harmonic oscillator, with
the perturbations of the form F/x2, G/y?, and D/z%. How-
ever, in general, for any other p, the symmetry is not obvi-
ous.

Table II. The three potentials V() are shown in column (1). The eigenvalues /> of Eq. (3.7) are given in
column (2), and the corresponding eigenstates in column (3). Case (i) is treated in detail in the text.

V(6) 2 H(8)
(i) C cosec? 6+D sec? 6 (a+ B+2n,)? (sin B)¥cos of
&= %+ JC¥m? x Py P12 (cos 26)
B =3+ 3(1+4D) n=0,1,2,
A2 -
s 2 s patny
(i) C cosec® 6+D cot 6 (a+ ny) G (sin §)**"2e
&= 3+ (Ctm?) X P mTIPTEm G cot 9)
A=D/2 R
Y™ Gtny)

(iii) C cosec? 8
+D cosec fcot 6 AZ+Bi=m?+C

24,B,=D

(1 — cos g)[(A1+Bl+1/2)/2](1 + cos g)l(ArB;ﬂmﬂ]
X Pi‘:‘+81’A‘_B‘)(cos 6)
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Table II. The two solvable radial potentials for the eigenvalue Eq. (3.8). The eigenenergy E [see Eq. (3.25)]
and the corresponding eigenfunction u(r) are displayed in columns (2) and (3), respectively.

U(r) E

u(r)

2 3
(l) wT r2+ 6/’,2 (2n +B2+ §)w

By = —3+ Jo+ I
e? . 8 et
@ -T+z 4(n+B,+1)°
B,= —%+ Vo+%

By+1,—wray Ba+1/2,1 2
r e L, (For)

n=0,1,2,...

yBr L exp( — L)

2

_ e’r
= (n+B,+1)’
n=01.2,.

IV. DISCUSSION

The potentials for which solutions were found in the ear-
lier sections are highly singular at =0, 7/2,..., and at (p @)
=0, m,.... This resulted in solutions that were restricted in
angular ranges, e.g., (0<6<w/2), and (0<¢=<m/p). In gen-
eral, there is no physical way of connecting these disjointed
solutions in the different angular regions. However, for the
two dimensional case, when a mapping is done to the corre-
sponding three-body problem, the different angular regions
corresponded to distinct ordering of the particles. No such
physical interpretation is apparent in the three dimensional
case.

After having dealt with the potential given by Eq. (3.9) in
detail, we may search for other examples of solvable non-
central potentials in spherical polar coordinates in three di-
mensions. One way to answer this question is to go through
the list of the analytically solvable potentials in one dimen-
sion as given in the standard texts on quantum mechanics.'?
It is found that there are three possible forms for U(¢) and
V(8) and two possible forms for U(r) for which the corre-
sponding Schrodinger equations are solvable. In Tables I to
IIT we give the possible forms for U(¢), V(6), U(r), and
the corresponding eigenvalues and eigenfunctions which
have been calculated by following the same procedure as
given above. Of course, due attention has to be paid to the
restrictions on the parameters arising from the physical ac-
ceptibility of the wave function. It is worth pointing out that
for all the 18 examples, the energy eigenvalues and eigen-
functions may also be obtained algebraically by using the
property of shape invariant potentials within the formalism
of supersymmetric quantum mechanics.>!* In fact, in con-
structing the Tables I-III, we have taken advantage of the list
of shape-invariant potentials given in Ref. 15. This aspect of
the problem will not be discussed here. The interested reader
may also look up Ref. 16, where supersymmetry has been
exploited to solve algebraically the three-body problem in
one dimension for many other examples.

It is also clear from the above discussion that in two di-
mensions there will be six exactly solvable noncentral poten-
tials in spherical polar coordinates corresponding to the vari-
ous choices for U(r) and U(¢).

The main results can be summarised as follows:

(i) It is seen from the three tables that 18 different noncentral
potentials in spherical polar coordinates may be constructed
in three dimensions by taking various combinations of U(r),
V(6), and U(¢) for which the energy eigenvalues and
eigenfunctions can be obtained analytically. Each of these 18
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noncentral potentials may have up to 7 independent param-
eters, as in the example given by Eq. (3.9).

(ii) For all the 18 potentials, the eigenfunctions are given by
Y(r,6,6)=u,(H, (0K, ($),

where n, ny, n, can take integral values 0,1,2,3-:- . Depend-
ing on the form and choice of the parameters in the angle-
dependent potentials, some degeneracy in the spectrum may
arise.

(iii) For the nine noncentral potentials where U(r) is taken to
be the Coulomb potential, one also has a continuous spec-
trum over and above the discrete one. It would be interesting
to obtain the phase shifts for these noncentral potentials.

(iv) As mentioned already, for all the 18 noncentral poten-
tials, one may obtain the spectrum algebraically without
solving the Schrodinger equation. This is also related to
Schrédinger’s factorization method.!’

(v) Generalization of our technique to noncentral potentials
in other standard orthogonal coordinate systems is straight-
forward. For example, one could instead consider the Schro-
dinger equation in the cylindrical coordinates and obtain
other examples of the noncentral potentials with seven pa-
rameters. The spectra may again be written down by using
the well known results for the analytically solvable potentials
in one dimension in each of the coordinates ¢, p, and z,

where p = x?+y2. Other systems of coordinates, or
higher dimensions may similarly be considered.

(vi) For noncentral potentials in two dimensions, there are
interesting applications in many-body problem, as discussed
in Sec. II. However, it is not clear if the noncentral potentials
in three dimensions, discussed in Sec. III, are of any physical
interest.
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An undergraduate computer project, suitable for a computational physics or applied numerical
analysis course, is presented. The equations of motion for the three H atoms of the collinear
H+H-H system are set up in the Hamiltonian formalism. They are then solved numerically, using
the analytical - Porter—Karplus potential energy function and the Runge—Kutta algorithm. The
program is used to illustrate several types of motion: nonlinear oscillations of the H, molecule,
atom—molecule inelastic collisions, reactive collisions. Results are displayed either as internuclear
distances versus time or as the motion of a point in configuration space.

L. INTRODUCTION

Since several years, the Physics Department of our Uni-
versity requires undergraduates to complete a semester
course on Applied Numerical Analysis. As part of the course
work, students must write at least one computer project. The
program should simulate some interesting physical phenom-
enon, for which analytical study is either impossible or very
lengthy. Students are given a short (one or two pages) text
describing a mathematical model of a physical system and
are asked to select and implement a suitable numerical
method and to explore properties of the model. The required
level of mathematical ability is roughly intermediate between
what is expected of the reader by Gould and Tobochnik' and
by Koonin.? In this context, we have found that an investi-
gation of reactive collisions between simple atomic systems
provides an interesting challenge, requiring a working
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knowledge of Lagrangian or Hamiltonian dynamics and of
numerical methods for solving initial value differential prob-
lems. Further, the current intense research interest in similar
problems may motivate students. We offer this account in the
belief that it may be useful to other Physics instructors.
The system H+H, (and its isotopic variations, such as
D+H,) is the simplest and best known reactive system.>” It
has been the subject of so many experimental and theoretical
investigations that even review papers are too numerous to
be all cited here. The theoretical approach is usually divided
in two parts. One first determines, through quantum me-
chanical calculations in the framework of the Born—
Oppenheimer approximation, the energy of the system, as a
function of the nuclear distances. This step yields a so-called
potential energy surface (PES). Once the PES has been ob-
tained, the dynamics of the nuclei can be investigated. Two
courses are then open to the investigator: either the nuclei are
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