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The hydrogen atom in a semi-infinite space limited by a conical boundary
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D. F, México

(Received 11 February 1992; accepted 25 July 1992)

It is shown that the Schrodinger equation for the hydrogen atom in a semi-infinite space limited
by a conical boundary, with the nucleus at the vertex, has an exact solution in spherical
coordinates. The limit in which the conical boundary becomes a tight sheath around its own axis
corresponds to a “‘one-dimensional” hydrogen atom with an infinitely degenerate ground state at
the ionization threshold. This model of an atom in a semi-infinite space includes as a special case
the pioneering plane-nodal-wave-function model used by Levine in 1965 to describe an isolated

donor atom on the surface of a semiconductor.

I. INTRODUCTION

The hydrogen atom in semi-infinite spaces has been used
as.a model of impurity atoms or defects on and near the
surface of solids.” It is more than a quarter of a century
since Levine' formulated his plane-nodal-hydrogen-wave-
function model to describe the behavior of an isolated do-
nor atom right on the surface of a semiconductor. In the
last decade, Liu and Lin? and Satpathy3 studied the Wan-
nier excitons near a semiconductor surface by considering
an electron-hole coloumbic attraction inside the semicon-
ductor and an impenetrable barrier outside its plane
boundary; and Shan et al* also studied surface effects on
impurity states as a hydrogenic system in half-space. More
recently, the hydrogen atom in semi-infinite spaces limited
by paraboloidal”® and hyperboloidal’ boundaries, with the
nucleus at a focus, have been investigated as models of
atoms on the surface of solids. The boundaries simulate the
confining effect on one atom due to its neighboring atoms
in the solid, and the interest in Refs. 8 and 9 is the ioniza-
tion of atoms in the solid subject to compression. While in
the model of Ref. 8 the atom becomes ionized when the
paraboloidal boundary gets close enough to the nucleus, in
the model of Ref. 9 the low-lying bound states of the atom
remain bound in the presence of hyperboloidal boundaries,
even in the limit in which the latter become a tight sheath
around the axis with the nucleus at the vertex.

In this paper, the study of the hydrogen atom in a semi-
infinite space limited by a conical boundary, with the nu-
cleus at the vertex, shows that the bound states of the
system exhibit a qualitative behavior similar to the one
found in Ref. 9. This quantum mechanics problem may be
of interest to the readers of this Journal insofar as it has an
exact solution, it illustrates the influence of the boundary
condition in changing the energy spectrum of the atom,
and its solutions are intrinsically interesting. In Sec. II, the
Schrédinger equation for the hydrogen atom is written in
spherical coordinates and its solutions are constructed sub-
ject to the condition that the wave function vanishes at the
position of the conical boundary. The ionization threshold
is analyzed, in particular, and it is found how the different
states approach it as the conical boundary closes in around
its own axis. When the cone becomes a tight sheath around
the axis, the system has become a “one-dimensional” hy-
drogen atom with an infinitely degenerate ground state at
the ionization threshold. In Sec. III, numerical and graph-
ical results of the energy eigenvalues as functions of the
conical-boundary half-angle are presented to illustrate the
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effect of the boundary on the states of the atom. We also
discuss the connection of these results with those of some
other models.

I1. ENERGY EIGENVALUES AND
EIGENFUNCTIONS

The Schrédinger equation for the hydrogen atom in
spherical coordinates is found in every quantum-mechanics
textbook, '°
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It is also known that it can be solved by the method of
separation of variables admitting a factorizable solution,

P(r0,p) =R(rOG(0)®(p), (2)

in which each factor satisfies the respective ordinary dif-
ferential equations
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Equation (3a) corresponds to the eigenvalue equation of
the square of the z component of the electron orbital an-
gular momentum; its eigenvalues are quantized on account
of the uniqueness condition on the values of the eigenfunc-
tion,

D (p) =™/ \2m,

m=0,+1,+2,.,

(4a)
(4b)

when the azimuthal angular variable, 0<@<2, changes by
an integer multiple of 27. Equation (3b) corresponds to
the eigenvalue equation of the square of the electron orbital
angular momentum,; it is also the differential equation for
the associated Legendre functions,“' 2

®(6) =P} (cos 0), (5)
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which are well behaved for 0<0<~ and singular at 8=,
in general. For any central force and when all the polar
directions are available for the motion of the quantum sys-
tem, 0<O<m, the eigenvalues in Eq. (3b) are restricted to
integer values of A=1/=0,1,2,... and its eigenfunctions be-
come the associated Legendre polynomials, Pj'(cos 0).
This is the case for the ordinary hydrogen atom, but it is
not for the hydrogen atom confined in the space defined by
0<6<86;, which is the system to be investigated in this
work. Equation (3c) corresponds to the eigenvalue equa-
tion for the energy, and the second term on its left-hand
side corresponds to the rotational kinetic energy contribu-
tion. It is also the differential equation for the associated
Laguerre functions,'®!!

2r
R, (1) =e~ %0\ F, ( —n32A+ 25— (6a)
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where ay,=#/pe’ is the Bohr radius, v=n,+A+1 is the
energy parameter,

VA
E=—2a0 , (6b)
and
& (@)X
1\Fi(a;bx) = DAY (7)

is the confluent hypergeometric function and (a),=a(a
+1)...(a+s—1), (a)g=1. The asymptotic condition on
the radial function R(7— oo ) —»0 imposed on Eq. (6a) can
be satisfied only if n,=0,1,2,..., in which case the confluent
hypergeometric function becomes a polynomial, namely,
an associated Laguerre polynomial of degree n,. Corre-
spondingly, for the ordinary hydrogen atom its energy pa-
rameter becomes the principal quantum number v=n=n,
+I+1. ‘

The hydrogen atom in a semi-infinite space limited by
the conical boundary 6=20,, with the nucleus at the vertex,
is described by Eq. (1), or its equivalent Egs. (3a,b,c),
with the boundary conditions

Y(r- 0,0€0<60,,0<9p<2m) =0, (8a)

Y(0<7 < 0,6 =06,,0<p<27) =0. (8b)

For the solutions of the type of Eq. (2) these boundary
conditions become

R(r— o )=0, (9a)
©(8=6,) =0. (9b)

The eigenfunctions can be constructed immediately from
Egs. (2), (4a), (5), and (6a),

2r
— —r/Zagv . —
¢,,/_m(r,0,¢p) —Nn/lme Zag r’llFl(-—n,,ZA+2,Za0v)
imp
I.)m
X Py (cos 9)72—1;, (10)

where Nn,,,, is the normalization constant; n,=0,1,2,...; A
is determined by the explicit form of the boundary condi-
tion of Eq. (9b), namely,

P} (cos 6y) =0, (11)
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and the corresponding values of v=n,4-A-+41 determine
the energy eigenvalues through Eq. (6b). Therefore, the
solution of the eigenvalue problem requires the solution of
Eq. (11). This is accomplished numerically by choosing
the values of m and A according to our convenience, and
finding the zeros 6=6, of the associated Legendre func-
tions, using their hypergeometric function representation
for m>0,

—A)p(A+1),,
Pj(cos 0) = (sin B)m(—z),n"'((T)i

XzFl(—(/l—m),/l‘Fm‘f‘l;m

-l—cose
+1; 2 ), (12)
where
< (@), ()X
Fr(abiex) = EOW (13)

It is not necessary to repeat the calculation for negative
values of m, because P; ™ is proportional to Py. The states
with the same magnitude of the magnetic quantum number
but opposite signs, Eq. (4b), are doubly degenerate. For
integer values of A=/ the hypergeometric function of Eq.
(12) becomes a polynomial of degree /—m. For noninteger
values of A the hypergeometric series is infinite, but for the
purpose of finding its zeros, the series of Eq. (13) can be
truncated taking a finite number of terms depending on the
desired accuracy; the number of zeros in the interval
0 < 0 < 7 is the nearest integer larger than A —m. The zeros
0, of Eq. (11) obtained in this way determine the position
of the conical boundaries for which the eigenvalue problem
has been solved with the eigenfunctions of Eq. (10) and
the eigenenergies of Eq. (6b).

At the ionization threshold E—0, and Eq. (6b) implies
that v— co and in turn A - o for finite values of n,. In such
a limit, the zeros of Eq. (11) tend to cos 6,— 1 or 63-0.
The way in which these limits are related can be estab-
lished by making the following approximations 1+ cos 8
~2, A(A+1) =A% and the change of variable,

x=A1+2(1—cos 8), (14)

in Eq. (3b), which is transformed into the ordinary Bessel
equation,
2 d’ d 22
(x Z;;+xa+ (x*—m ))®=O. (15)
Therefore, the position of the conical boundary and the
orbital angular momentum eigenvalue parameter are re-

lated through the zeros, Eq. (9b), of the ordinary Bessel
functions, j,, ,

——cos (1) =0.
Ao
finite s

Y (16)

2

60=cos'1(1

In the limit 6,=0 the conical boundary becomes a tight
sheath around its axis and the hydrogen atom can be con-
sidered as “one dimensional.” The ground state of such a
system is infinitely degenerate at the ionization threshold.

It can also be recognized that the conical boundary be-
comes a plane for y=m/2, in which case our model is
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Table I. Energy eigenvalues of hydrogen atom in different states and for different positions of conical boundary.

n=0,(ngm)  (0,0) (1,0) 20) ©=1)  (L=) @D (©0=2)  (L+2)  (2%2)
A E[Z2¢/2ay] cos 6y cos 6y cos 6y3 cos 6, cos 6y, cos 6.3 cos 65, cos b, cos Gy3
0 —_ 1 e
172 —4/9 —0.65223
1 —1/4 0.00000 o .
32 —4/25 037234  —0.90378 —0.41944
2 —1/9 0.57735 -0.57735 0.00000
5/2 —4/49 0.69827 —0.25547 —0.95636 0.26970 —0.73633 —0.33186
3 —-1/16 0.77460 0.00000 —0.77460 0.44721 —0.44721 cee 0.00000 e
7/2 —4/81 0.82555 0.19363 —0.55145 0.56859 -—0.19968 —0.85057 0.22185 —0.63382
4 —1/25 0.86114 0.33998 —0.33998 0.65464 0.00000 —0.65465 0.37796 —0.37796 e
9/2 —4/121 0.88692 0.45179 —0.15567 0.71766 0.15879 -0.46081 0.49184 -0.16937 —0.76782
5 —1/36 0.90618 0.53847 0.00000 0.76505 0.28523 —0.28523 0.57735 0.00000 —0.57735

reduced to that of Ref. 1. In such a case, the planar node
condition of Eq. (11) requires A=/ to be an integer and
I+m to be odd. Furthermore, for a given value of /, the
corresponding magnetic states m= + (/—1),+ (/-3),...,
+ 1(or 0), if / is even (or odd), have the same energy and
are / degenerate. Consequently, v=n is also an integer, and
for a given value of n the degeneracy is of order 31—/
=n(n—1)/2. These degeneracies are without taking the
electron spin into account and are doubled if the spin de-
generacy is included.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, some numerical results are presented
through Table I and Fig. 1(a)-(c), to illustrate the energy
spectra of the hydrogen atom for different positions of the
conical boundary. Each state is characterized by the set of
numbers 7n,, ng, m, where m takes the values of Eq. (4b), n,
the values described after Eq. (10), and 7 is the number of
nodes of P7*(cos @) in the open interval 0 < 8 < 8, or cos 6,
< cos 0 < 1. For each state, the choice of A determines the
position of the boundary, characterized by the value of
cos Gy, and the energy eigenvalue, in the way described
after Eq. (11). The Tablé contains a sample of numerical
data for the lowest lying states only, while the figures
present a more global picture for those and some additional
states.

The numerical data in Table I are restricted to the states
without any radial excitation, #,=0, and the three lowest

COS 6o
0

000
-

a)
Fig. 1. Energy levels of hydrogen atom in different states (»,, ng, |m|) for

different positions of conical boundary. (a) m=0, (b) m=+1, and (c)
m=+2. Energy unit Z’¢*/2a,
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excitations in both polar and azimuthal degrees of free-
dom, ny=0,1,2 and m=0, 4 1, +2, respectively. The same
entries for the orbital angular momentum parameter A and
the corresponding positions of the conical boundary
cos G ; are valid for states with different radial excitations,
n,=1.2,..., for which the energy entries are easily calcu-
lated using Eq. (6b). The ordinary hydrogen atom corre-
sponds to 8,=1, when the entire space is available and the
energy spectrum is given by Eq. (6b) with integer values of
A=Iland v=n=n,+141; the corresponding energy levels
have the dashed entries in Table I and are shown on the left
sides of Fig. 1(a)—(c) for cos ,= - 1. For integer values
of A=1, Eq. (11) has /— | m| zeros, cos 6, , symmetrically
located relative to cos 8;=0 and defining the position of
the conical boundaries for which the atom in different
states (ng=s—1=0,1,2,..,/]—|m|—1) has the same en-
ergy. For the noninteger values of A, the zeros of Eq. (11)
are no longer symmetrically distributed and their number
is the larger integer nearest to A— |m/; it still holds valid
that for given values of n, and m, the different states (n,
=5~1=0,1,2,...,, larger integer nearest to A—|m|—1)
corresponding to the different conical boundaries cos 6
have the same energy, Eq. (6b) with v=n,+A+1. If we
follow the energy of each state as the conical boundary
decreases its half angle from G,=m to 0, or correspond-
ingly its cosine goes from —1 to 1, we notice a monotonic
increase. The well-known n? degeneracy of the ordinary
hydrogen atom energy levels'® is reduced, in general, by
the presence of the conical boundaries to one for the m=0
states and to a double degeneracy for the other m states, as
described after Eq. (13). In the particular case of the plane
boundary, cos ,=0 or 6,=m/2, the degeneracy is n(n
—1)/2 according to Levine' and the discussion at the end
of Sec. II; this is illustrated by the states (0,0,0) with n=2,
(1,0,0) and (0,0,%=1) with n=3, (2,0,0), (0,1,0),
(1,0,+1) and (0,0,%2) with n=4, etc. Figure 1(a)-(c)
illustrates the crossings of energy levels for states differing
in two or more quantum numbers, and no such crossings
for states differing in one quantum number. The low-lying
states, with finite values of n, and ng, tend to become closer
among themselves and to the ionization threshold as the
boundary approaches its own axis, i.e., E—0 as cos p— 1;
this general trend can be appreciated in Fig. 1(a)-(c). In
particular, at the right side of each figure, corresponding to
cos 65— 1 or 6,0, the tendency toward an infinite degen-
eracy of the energy levels of the “one-dimensional” hydro-
gen atoms at the ionization threshold is clearly illustrated,
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because there are an infinite number of additional states
with almost the same energy for the successively larger
values of n,, ng and |m|. The limit of the one-dimensional
hydrogen atom 6,=0 is expected to be valid only for the
m=0 states, since according to Eq. (12) the probability
amplitude for the other m states vanishes.

The discussion of the previous paragraph has been re-
stricted to the low-lying states of the hydrogen atom, i.e.,
finite values of its quantum numbers. Going back to the
paragraph of Eq. (14) we can consider some complemen-
tary and alternative situations in which the atom can be
ionized for finite positions of the conical boundary. First,
v— oo can be obtained for finite values of A and n,— .
Second, within the original assumption of A — o and finite
n,, the energy threshold is reached by taking the states with
high polar excitation n, equal to the least integer that is
greater than or equal to A—|m|—~1, A—|m| -2, ..., for
which the conical boundaries are far from 6,=0. In any
case, the general conclusion is that the presence of the
conical boundary cannot by itself ionize the hydrogen atom
in low-lying states; it can produce ionization of states that
are highly excited radially or polarly.

We close this discussion by pointing out that the model
studied in this paper is the limiting situation of the model
of the hydrogen atom in a semi-infinite space limited by a
hyperboloidal boundary’ when the focal distance of the
latter tends to vanish. Both models share the dynamical
and geometrical properties studied in Sec. II and discussed
in this section. The model with the conical boundary is

Aspects of Debye shielding

Nicole Meyer-Vernet

obviously much simpler and its study may open a door for
the ir}tgrested reader to some of the physics of surface ef-
fects. ™
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The Debye shielding is derived in a simple way without assuming Boltzmann’s equilibrium. The
conditions under which it applies and some of its consequences are discussed at the elementary

level.

I. INTRODUCTION

One of the most basic ideas of plasma physics is Debye
shielding, first recognized' when the plasma did not even
have a name.” Yet, elementary textbooks discuss it rather
briefly and in virtually the same way, and one is accus-
tomed to take it for granted. Thinking more deeply about
it, however, raises some questions and reveals a few sur-
prises.

At first sight, the concept seems rather trivial. Since
electric charges attract oppositely charged particles and
repel the others, ionized matter tends to maintain electrical
neutrality; but the thermal agitation counteracts this ten-
dency. Loosely speaking, the Coulomb attraction keeps op-
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posite charges together, whereas the particle agitation
tends to separate them; the balance allows the existence of
nonneutral regions whose scale—the so-called Debye
length, increases with the thermal agitation—i.e., the tem-
perature, and is an inverse function of the density (since
increasing the density of charge carriers favors the shield-
ing). Neutrality is not perfect at the Debye scale but is
effective farther out, so that any charge has a dress of size
the Debye length which makes it “invisible” from larger
distances.

This loose argument, however, as the classical Debye—
Hiickel derivation that can be found in virtually any text-
book, is based on thermal equilibrium. But many plasmas,
and in particular most space plasmas, are collision-free,
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