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itor screen. Analysis of the shape by Fourier decomposi-
tion then shows the presence of first, third, and, though
close to the noise level, fifth harmonics.® The relative
strength of the harmonics depends on the strength of the
nonlinear force term and on any nonlinearities in the
driver.

IT1. CONCLUSION

The simple nonlinear system described above can be
used for a class demonstration of the jump phenomenon
associated with the bent tuning curve. As an individual lab
experiment, it provides the student with apparatus that
may be adjusted to display either the behavior of a linear-
damped harmonic oscillator or that of the forced Duffing
oscillator through adjustment of the tension in the rubber
string. The Duffing oscillator is readily introduced into a

sophomore—junior level mechanics course and may be pur-
sued at length in independent study at a higher level.
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A simple quantum-mechanical model consisting of a two-level system coupled to a continuum,
where the interaction can be varied from perturbative to strong, is examined for what can be
learned about quantum mechanical decay using elementary methods. The decay spectrum and
time dependence of the amplitudes can be calculated in this model, without resorting to
perturbation theory. The spectrum is not precisely Lorentzian nor is the decay precisely
exponential, features that appear to be shared by all quantum-mechanical models of decaying
systems. The conditions for exponential decay and some of the reasons for deviation from this at

both short and long times are discussed.

I. INTRODUCTION

Whereas the behavior of quantum mechanical systems is
normally studied or explained with the aid of simple solv-
able models, there is no such illustration for the system
undergoing quantum mechanical decay. One of the reasons
for this is that the distinctive feature of a decaying system,
namely the exponential decrease of the probability of find-
ing the system in its initial (undecayed) state, is not the
characteristic time dependence of any simple model.

Why do we expect that excited mechanical systems, such
as atoms, should decay exponentially? According to an ele-
mentary argument, when a system 4 decays to B with emis-
sion of ¢, then after a certain characteristic period of time 7,
afraction 1/e of an original sample of 4 ’s will survive. If at
that time we were to separate from the remainder the unde-
cayed A ’s, then these 4 ’s would suffer the same fate as the
original sample, namely only a fraction e ~ ! would remain
after a (further) time 7. Of the original sample a fraction
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e~ 2is thus left after time 27, and we expect ¢ ~ " will be the
residue after time n7: In other words, the number remain-
ing reduces exponentially with time (¢) ase ™"/,

The problem with this argument is that it is essentially
classical. It overlooks the peculiarity of quantum mechan-
ics that one cannot allow, even for the sake of argument, the
intrusion of an observer into the state of the system without
sacrificing the orderly time development of the wave func-
tion. Thus at the point where we separately identify those
atoms in state 4 and those in state B, their wave functions
collapse from a coherent superposition of 4 and B to an
incoherent mixture of so many 4 ’s and so many B’s.

The validity of the exponential decay law has been dis-

- cussed in the literature for a number of years. Khalfin* has

shown in general that if the energy distribution is semifinite
then there can be no pure exponential decay. In fact, the
Fourier time transform a(?) of any function A(w) that
vanishes for all @ less than some value w,, behaves for large
t as a power of £.> Winter* shows in the special case of
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penetration through a delta-function barrier that the prob-
ability density does not decay exponentially except within a
limited time interval. At large ¢ again the decay rate is an
inverse power of ¢. Other studies®® show that the inverse
power law is dependent on the structure of the initial state.
Moreover, the breakdown of exponential decay at short
times has also been noted.’'2 It is a simple matter to show
that the probability of decay is initially proportional to ¢°.
The probability of finding the system still in state 4 after a
(short) time tis then 1 — at? + (higher powers). A system
interrupted N times.in an interval f would then be found to
survive all & interrupts with probability [1 — a(¢/N)?]%,
a quantity which approaches unity as NV approaches infin-
ity. Thus over an arbitrary time interval ¢, the system would
not decay at all if constantly interrupted. This has been
described as the “watched pot” effect, or the quantum
Zeno paradox.'!

An experiment with the objective of displaying the quan-
tum Zeno effect’ for the rf transition between two *Be *
hyperfine levels, confirms that this is a real effect. As far as
the long time deviations are concerned, from the studies
cited above (Refs. 5-8) and others'*'* there appears to be
no formal obstacle to experimental observation of these
large time deviations in nature, although the magnitude of
the effect is likely to be very small. Yet experiments'>'S
including a recent study on the B decay of **Mn at large
times have shown no sign of deviation from exponential
decay.

Thus quantum mechanical decay is not exponential for
very short times or for very long times, and indeed these
seem to be its only universally proven features. Exponential
decay, although apparently a rule of nature, is not a precise
result according to quantum mechanics.

Textbooks contain many examples of how to calculate a
decay rate w ( = 1/7) using Fermi’s Golden Rule,'” which
for a transition j— k we write:

w;_x =2w|H} |’p(@y), (D

where H ' is the interaction Hamiltonian and p is the den-
sity of states (notice that we have put #i=c=1). The
quantity w also appears as the width in the Lorentzian line
shape, which is the characteristic energy distribution of the
decay products c:

o) =w/2r] (0, — w,)* + w’/4]}. (2)

But the arguments that result in Egs. (1) and (2) must
assume (sometimes only implicitly) that the decay rateisa
constant (i.e., that the decay is exponential) and H ? can be
treated as a perturbation.

In the following, we examine a model that does not rely
on perturbation theory. It provides an alternative to the
Lorentzian line shape with the desirable characteristic that
it has a threshold [which Eq. (2) does not] and also en-
ables us to examine the behavior in the limit of strong cou-
pling. We are also able to shed some light on how the decay
curve changes from its initial parabolic behavior, through
an exponential phase, to a final inverse-power-law phase.

The system we originally had in mind was nucleon—-an-
tinucleon annihilation (for which the coupling is certainly
strong) expressed as a particle falling into a hole (as in
Dirac’s hole picture of antiparticles) and accompanied by
the emission of a scalar meson (no such particle exists, but
a fictitious scalar meson, the g, plays an important role in
nuclear force calculations; see for example Ref. 18). But
our purpose here is to examine this model for what it can
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reveal about decaying systems in quantum mechanics rath-
er than to discuss any merits it may have as a model of
particle-antiparticle annihilation; the original purpose will
show only where we have chosen numerical values for the
physical quantities involved.

I1. MODEL OF A DECAYING SYSTEM

Consider a system that, in the absence of interactions,
consists of a particle that can exist in a discrete excited
particle-hole state ¢, ¥, with energy o, ( = @, — @,), orin
a continnum of free meson states with energy w,

[=VmT+&D ]. An interaction couples these two with
a scalar coupling constant g. We write in the interaction
representation:

Y _ g

W, 3
£y in (3)

where the wave function V is a linear superposition of the

particle-hole state 1,1, and the meson plane wave e*":

¥ =a(t)y, ¥, +fd3k b(k,t)e™ . (4)

The interaction matrix element is
(Hine Yo = fa”r Yigggetre T ()
= V(k)e ™, (6)

where Eq. (6) defines V' (k). At time ¢ = O the system is
launched in its undecayed state (#,%,) and no meson is
present. The initial conditions are therefore

a(0) =1, bk,0)=0. (N

Equations for the coefficients a(¢) and b(k,?) are extracted
by substituting Eq. (4) into Eq. (3) and taking the inner
products with 1,1, and e*™:

i%:fd% VK)b(k,p)e' ™ ", (8)

.db iy — wg)t

i— = V*(k)a(t)e 9
at

Combining Eqgs. (8) and (9):

ﬂz_= _fd3k|V(k)|2J dtla(tr)el'(m(,—mk)(t—t')‘
dt o
(10)

Now after a long time (- o), b(k, o0 ) is the probability
amplitude for emission of a meson of momentum k, and
a( ) is the amplitude for the system to be found still in the
state 1,1/, (and presumably zero, see Sec. IV however). It
is convenient to define a(¢) = 0 for # <0, and to introduce
the Fourier transform of a(#)

Aw) =—1—fwvdta(t)e"“" (1)
2 Jo
so that
a(r) = f " do floye= ", (12)
b(K,c0) = = 2miV*(k)flo, —w,). (13)

To obtain an expression for f{w) we integrate Eq. (10) as
follows:

D. S. Onley and A. Kumar 433



J‘“‘ dt e(iw— e)t_‘_i_a_
o dt

- _faﬂle(k)IZJw d ol 0= O+ = on)e
0

t
Xf dt'a(t')e"(“’"‘w")t', (14)
where € is infinitesimal. Applying 1ntegrat10n-by -parts to
both sides of Eq. (14) and rearranging, we get an explicit
expression for f(a))
"2 —1
f(w):[Z1ri(—a)+fd3k’ 149} )] .
O+ Wy — Wy + I€
(15)
Change the integral in Eq. (15) to one over energy by intro-
ducing the density of states p(w, ) and defining:

Z(wk) =fd3k’_ﬂl_nz__

W, — Wy + i€
= [ do,

P(wk )| V(K )|2

( oy + i€) — wy
If we regard Eq. (16) as an integral in the complex w,.
plane then, for a physical energy, w, is real and greater
than m; we can deform the path to that shown in Fig. 1 and
separate it into a principal value integral and a contribution
from the semicircular portion around the pole at w, :

f dow, 2K Qw) PJd 0, 22D — TiQ(w,).
path 1 @y — Wy K — @y
(17)

Since the integrand Q = |V |*p is a real function, then for
real w, Eq. (17) divides the integral into real and imagi-
nary parts; it is useful to identify them: Let
L) Vk' 2 ,
Qw,) = pf do, VIO Plo)

@y — Wy

(16)

(18)

Qo) =plo)|V(K)|* (19)

The spectrum of emitted mesons is then

Fig. 1. Path used to evaluate integral in Eq. (16).
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S((Uk) = lb(kyw)lzp(wk)

O(w;)
[600 — o, + Uo,) ]\2 + ‘szQ(a)k )2 ’
which evidently reduces to the Lorentzian shape of Eq. (2)
if we replace the function Q by its value at the approximate
center of the distribution w, and neglect  altogether. The
corresponding time-dependent amplitude a(z) is given by
Eq. (12) where we now have an explicit expression for

flw):
fort>0, a(t) = —f

(20)

. 21
Z ( a)) — 0+ o,

InEq. (21) we have moved the origin to w, and discarded a
factor exp(iw,t), which is irrelevant. Evaluation of the in-
tegral of Eq. (21) evidently calls for an explicit form for the
function Z, which entails an explicit form for |V |’0. We
have selected a simple expression consistent with the re-

quirements |V |’0 =0 at the threshold w, =m, and
|V |%p=0(w7?) asw, —~ o: Let
V() (o) =& [ (Wi —m?)/ (0} —b7)7],  (22)

where b is real, |b| <m. Expression (22) has the added
advantage that the integrals (16), (18) are easily carried
out:

b2+ om (26— w)Ym? - b’w
Z(w) =
(@) gz(sz(bz—wz) 4°(b— o)
2b+w)m*+b%w
1 —b 1 b
Xln(m — b) + 276 + o2 n(m + b)
2 2
—(Z’—Z_—ZT);ln(m—a))). (23)

Here, @ ranges over the whole complex plane and the phase
of the term In(m — w) must be chosen to agree with
Q — irQ on the positive real axis beyond w = m. It is fairly
easy to see that this is

Z(w) = QUw) + iQ(w)arg(m — w),
——3—27— <arg(m — w) <12T-, (24)
where A
b?+wm 2b—w)Ym? —b*w
Qlw) =
(@) gz(sz(bz—wz) 4b3(b — w)?
(26 +w)m?* + b0
1 —b 1 b
XIn(m —b) + TEITIAT n(m+ b)
®* —m?
Q(w) =g [(&® — m*)/(® — b?)?]. (26)

Suppose we take the integral (21) from —X to X
(where ultimately we will let X — « ) and attempt to close
the contour by a semicircular path of radius X. The expo-
nential e ~ *’ (where ¢ > 0) will converge in the limit X - oo
only in the lower half-plane. Now the function Z(®) has a
branch point at the threshold value m, and so the semicircle
will not close; it is necessary to circumvent the branch
point as shown in Fig. 2. Take the cut along the line
®=m— iy, o >y>0, so that the contour consists of two
quarter-circles. In the limit X — « the contribution from
the arcs vanishes leaving only that along the real axis, and
the integral up and down the cut (or, equivalently, the inte-
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Fig. 2. Contour used to evaluate integral in Eq. (21).

;, — imt

Q(m —iy)e >

gral of the discontinuity across the cut). The latter, owing
to the placement of the cut, converges like a real exponen-
tial e ~*. Thus the integral (21) is of the form:

a(ty= - Y Rje_i“’"

poles,j

1 m_i”d ( 1 )“’“ —iwt
— | ———— e
27i Jm Z(®) —0+wvg/w—¢

(27)

where j labels all poles of the function [Z(w) —w
+ @,] ! on or below the real axis and R, is the corre-
sponding residue. From Eq. (24) we can write the contri-
bution from the cut more explicitly as

— le

This integral cannot be expressed in closed form (as far as
we know) but it is a slowly varying function of time and
easily tabulated for any set of parameters.

III. NUMERICAL EXAMPLES

For the constants in the model we take the following set
of values;

@y = 1000 MeV, m =300 MeV,

a( =m*—5%) =50 MeV,
g = 750-4000 MeV*2,

notice that we give a range of values for the coupling con-
stant g in order to explore the transition from a perturba-
tive type of situation, where the golden rule should be a
good approximation, to the case of strong coupling.

To calculate the decay curve it is necessary to know the
analytic structure of a(¢) from Eq. (27). For the smaller
values of g, one pole dominates the decay amplitude for
many half-lives. The decay curve, |a(¢)|?, is consequently
very near to being exponential, which would appear as a
straight line on a semilogarithmic plot (see Fig. 3). Never-
theless, a departure in the form of a slight oscillation is
apparent after five or six lifetimes. This is the result of inter-
ference between the pole term and the small contributions
of the cut. At large values of ¢, the cut term should domi-
nate because its asymptotic form is proportional to z ~ as
can be seen by expressing the variable in Eq. (28) as
@ = m — iy, expanding the rational part of the integrand as
a power series in y, and integrating. This gives us

J dye”
0
&m

x| — o
( (m> — b2)*[Q(m) —m+a)0]2y+ (yz))
~— mg’ t 2

(m* — b2 [Q(m) — m + w,)?

Thus in the limit of large 7, [a(¢)|>*~¢ ~* An estimate for
weak/moderate coupling of the time at which exponential
decay breaks down is given by

(29)

(30)
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J; 4 [Qm —iy) — 4irQ(m —iy) —m +iy+a)0]2+ [7Q(m —ip)]*

(28)

—

mg’
(m? — b2 [Q(m) —m + w)?’
(31

t?exp[Im(w;)t] =

where o, is the position of the pole. This expression is ob-
tained by equating the approximate amplitude of the pole
term to the asymptotic expression for the cut term.

To consider the short time behavior, note that both
terms in Eq. (27) contribute, and both are dominated by
oscillatory (imaginary exponential) factors: exp( — imt)
for the cut term [see Eq. (28) ], and exp[ — i Re(w,#) ] for
the single pole term. The probability, [a(#)|? thus has a
component which behaves like cos[Re(w,) — m]¢, which
is a rapid oscillation unless the energy of the transition is
very low, and which approaches unity in the prescribed
parabolic fashion as -0 as shown in Fig. 4. But the para-

1’
10"
10°
10°
10
10°
10"
107

g = 750.

la(®)®

10’

-10

-1

10
10"
1 0—13

TYTR T YT T T T TRy T YT T TPy T TP T VYT Y YTON Y Ty YOy Ty 1T

o
N
IS
(=]
e ]

10
t

Fig. 3. Decay curve for weak coupling (g = 750) shows exponential decay
for five to six lifetimes but eventually switches over to a. power-law (¢ ~*)
dependence. Time (#) in Figs. (3), (4), and (5) is in units #/MeV.
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1
=750,
0.98- g
0
g
0.96 ]
0.94 T T T T
0000 0002 0004 0006 0008 0010
t

Fig. 4. Short-time behavior with g = 750, showing initial oscillations and
parabolic behavior as 1—0.

bolic phase lasts only a very short time, approximately ren-
dered in terms of the input parameters as (w, — m) ~'.
The basic behavior is oscillatory with a decreasing mean
value which does, indeed, fall exponentially with time;
moreover the amplitude of the oscillations decreases as
shown in Fig. 5.

For large g ( > 1337) a second pole is evident on the real
axis (see w, in Fig. 2) and the decay now approaches a
nonzero value as in Fig. 6. For very strong coupling
(g = 4000) all traces of exponential decay disappear and
the decay curve proceeds in an oscillatory fashion to its new
value (Fig. 7). In both of these cases, the state approached
as t— oo is dictated by the second pole, which represents a
stable composite state, part particle-hole and part meson

09 |-
08

g = 750.

lat)®

o
3]
T

0.3 T —
0.0 0.1 02 0.3

t

Fig. 5. Behavior of oscillations with g = 750, over a period comparable
with the lifetime (7 = 0.26 on this scale).
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1
0.1
0.01 g = 1500.
2 0.001
—~ 8
=)
k-1
0.0001
0.00001
0.000001
I T T I
0 05 1 15 2
t

Fig. 6. Decay curve for intermediate coupling (g = 1500) shows exponen-
tial decay initially but eventually approaches a nonzero value.

cloud, and which is now the lowest energy state of the inter-
acting system. Thus the end product of the decay process
has a small particle-hole component and results in the non-
zero limit for |a(#) |>. The wave function of this state and its
relationship to the pole on the real axis, although not essen-
tial to the present argument, are nevertheless interesting
and given in the Appendix.

The corresponding line shapes [ Eq. (20) ] for the energy
of the emitted meson are shown in Fig. 8; they do not show
any eccentricities corresponding to the marked changes in
the behavior of the decay curve. In fact aside from a grow-
ing width (Q,) and displacement of the center ({),) as g
grows from 750 to 4000, a neat bell-shaped curve is re-
tained. The bell is slightly asymmetrical but this is hardly

13
3
o.1§
] g = 4000.
« ]
% o.o1-§
o.oo1§
]
-
0.0001 T T T
0.00 0.05 0.10 015 0.20

Fig. 7. Decay curve for strong coupling (g = 4000) shows entirely nonex-
ponential time behavior.
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0.20
Legend
0.15+ g=750.
£= 1500,
T 2= 4000. _
2N e
?
= 0104
Ao
3
73]
0.05
/\\
0.00 = ==

I 1 I L
950 1000 1050 100 150 1200
w (MeV)

Fig. 8. Line shapes for @, = 1000 MeV show bell-shaped curves shifted
and slightly asymmetric as coupling increases.

noticeable. Departure from the Lorentzian shape is more
evident if we move the center of the line (w, + ;) nearer
to the threshold (m). In Fig. 9 the value of w, has been
reduced to 400 MeV which is only 100 MeV above the
value of m. Now the line shapes are seen to exhibit a charac-
teristic cusp at threshold, so strong in the case of weak
coupling (g = 750) that a slight second maximum is creat-
ed.

Although our example is not intended as a universal
model of decaying systems, we thought it interesting to fit
the parameters to reproduce some real physical systems:
To do so we need the threshold (m), the lifetime (7) or
width (w), and a dimension (@ ~ ) typical of the size of the
system. As an example we chose the short-lived component
of the kaon K; because its uncanny ability to survive past

0.020
Legend
0.015 £= 750,
£=1000.
'9 £=1500. _
©
= 0010 :
P \
3 \
N’ '[ '\
174} / "
0.005 ;oA
S AU
/ g \. \
el - \\\\\ N
0.000 K= , ==
300 400 500 600 700

w (MeV)

Fig. 9. Line shapes for w, = 400 MeV (close to threshold at 300 MeV)
show cusp-shaped modification at threshold.
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its exponential lifetime is the origin of the discovery of CP
violation (might this be in part attributable to the natural
breakdown of exponential decay)? To represent strong
coupling we chose the A—the most venerable of nucleon-
pion resonances which decays so rapidly it barely exists as a
particle at all. We found the values o, = 500, m = 300,
a =200, g=5.4X10"* for the K system; these put it
comfortably in the region where perturbation theory ap-
plies and the onset of nonexponential decay in our model
does not occur until 90 lifetimes have passed. To reproduce
the A resonance we find we need w, = 1200, m = 1070,
a = 200, g = 2650; we note this implies a coupling strong
enough that the decay curve would seriously deviate from
exponential. Whereas no one has seriously looked for expo-
nential decay of the A, our warning is not without content;
it would also be questionable to represent the A by a single
pole, for example. ‘

1V. REMARKS AND DISCUSSION

The nonexponential nature of models of decaying sys-
tems has been remarked upon earlier; we could compare,
for example, with recent notes on the solution of the barrier
penetration problem,'*?° which is a popular model for al-
pha decay and fission. All show these essential features in
common: The long-term decay curve follows a power-law
type behavior and not exponential, the earlier part of the
curve has an oscillatory component superimposed on the
exponential decay.

Possibly some of these features arise from unrealistic ini-
tial conditions. It is difficult to describe in a universal way
the conditions under which a sample of unstable material is
separated and identified, and translate these into the initial
conditions on the wave function or density matrix. But one
of the reasons for choosing the present model is its simpli-
city; it should then be possible to visualize what is going on
(with the caveat that such avision is likely to be classical in
nature, and somewhat suspect for that reason).

The system we have described starts as a pure particle-
hole. As it begins to decay, the particle leaks into the hole
and a cloud of mesons starts to form around it. In weak
coupling the cloud dissipates and has little effect, but with
strong coupling a significant meson wavepacket forms
whose presence near the source retards the decay of the
system by giving it the opportunity of reabsorbing the me-
son and returning to the initial state. In either case there is
an oscillatory exchange between the two parts of the sys-
tem which, in the case of weak coupling, is effectively
damped. The initial behavior is indeed parabolic, as Ref. 10
would predict, but only in the sense that it is the opening of
an oscillation (comparable with a pendulum being released
from its extreme position). When the meson system is an
adequate match for the particle-hole system, the two can
reach some form of equilibrium, albeit oscillatory, and the
decay proceeds adiabatically, so that one would expect the
population to fall only as fast as the magnitude of the wave-
packet in the neighborhood of the source. Wavepacket
spreading is not exponential but typically follows a power
law, hence we may understand the power-law type depend-
ence of the tail of the decay curve. For sufficiently strong
coupling, part of the meson wavepacket fails to escape alto-
gether and is retained to form a new composite ground
state. The stronger the coupling, the sooner this happens,
along with the accompanying leveling of the decay curve.
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The second effect noted in the time dependence is oscilla-
tion about the exponential line. These would wash outin an
unphased assembly of systems with starting times spread
over a period large compared with that of the oscillations.
Such an assembly might very well represent many physical
samples we would be able to prepare, and hence give some
credence to the position that under realistic conditions ex-
ponential decay still holds. Under conditions where the ini-
tial oscillations have a long period (in our model this
means very low energy transitions), and where it is possible
to trap and study individual systems, these oscillations
should be observable. There also remains the problem of
observing the nonexponential (power-law) decay in the
extreme long-time limit.

V. SUMMARY AND CONCLUSIONS

We have a straightforward quantum mechanical model
for a system that consists of a discrete level coupled to a
continuum; it is therefore a model of quantum mechanical
decay. The time-dependent Schrodinger equation can be
solved without approximation. For weak coupling we can
see how the Lorentzian line shape is closely reproduced
and how the time dependence, dominated by a single
“pole” term, is very near to the classical decaying exponen-
tial, over many lifetimes. We can also see the breakdown at
large times and trace this to a second term, a “cut” contri-
bution, which interferes with the pole. The interference
also produces rapid oscillatory contributions. For strong
coupling a second pole appears, which we can identify with
a new ground state of the system, and which deforms the
time dependence still further so that the decay amplitude
no Jonger approaches zero (there being an overlap between
the original state and the new ground state). The oscilla-
tory contribution persists and the exponential behavior is
increasingly swamped as the coupling increases. The line-
shape is no longer a simple Lorentzian but is shifted and is
slightly lopsided. Noticeable also is the behavior at the
threshold, where the distribution rises vertically in a typi-
cal cusp-like fashion.

Far from being peculiar to this model, these features
seem to be typical of such models of decaying systems in
quantum mechanics (a particle escaping through a barrier
is another example*'?°). Whereas there are many respects
in which these results seem to be at odds with nature
(where decay appears always to proceed in an unhampered
exponential fashion), one cannot yet fault the predictions
by experimental counterexamples. The most one can say is
that the predicted behavior seems to be counterintuitive.
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APPENDIX: GROUND STATE OF THE
INTERACTING SYSTEM

We are looking for an eigenstate of the interacting sys-
tem, which we identify with the label g¢:

(Hy+ H)Y, = 0,9, (AD)
Express 1, in terms of the unperturbed eigenstates [similar
to Eq. (4)]:
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b =a b+ [ Kby (A2)

Now take the inner product of Eq. (A1) first with the state
Y11y, We get

w6, +fHékbq(k)d3k=wqaq (A3)
then with the meson state e*"
wib, (k) + Hioa, = w,b, (k) (A4)
combining Egs. (A3) and (A4) we get
. LA _ ‘
0, —0y=| ——%_ g% = Z(w,), (AS)
W, — oy

where the function Z(w) is defined by Eq. (16). Now with
reference to Eq. (21) we see that the expression for a(#) has
apole wherever Z(») = o + w,, and this, according to Eq.
(A5), will be true at @ = @, — w,, on the real w axis. This
is the pole associated with the bound state. To get the wave
function of the state combine Egs. (A3) and (A2):

- HI
¥, = a,,(:/mpz + f — ™ d%k ),

®, — @y

(A6)

where the coefficient @, may be determined by normaliza-
tion. Since it is a bound state we require

(a)q’wq) = 19

which results in

HI 2
jaqlz(l +J—I——ﬁ’—|—£d3k) =1 (A7)
(a)q - wk)
This can be written most compactly
la,?=1/[1-Z"(»,)], (A8)

where the prime indicates the derivative of Z(w). In this
form it is easily related to the residue [say R, which will be
one of those appearing in Eq. (27)] of the integrand

[Z(wy+ @) —w] ™' at the bound-state pole
0 =0, — oy

R,=1/Z"(a,) (A9)
and hence

la,*=R,/(R, — 1). (A10)
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The learning process is invariably improved by alternative, complementary views of a concept.
This paper’s pictorial representation of the discrete Fourier transform (DFT) is helpful in that
students can understand internal steps of development, as well as the final result, in terms of
vectors. It builds upon the widely known fact that the exponential terms in the transform pair are
roots of unity in the complex plane; or in alternative physics terminology, they are unit vectors.
After weighting these vectors by sampled values of the function to be transformed, using a simple

recipe, the DFT is obtained through vector addition.

L. INTRODUCTION

The Fourier transform has received greater attention in
experimental physics as instruments based on it have be-
come popular.' Meyer-Arendt* displays boldness in his
statement: “Fourier transform spectroscopy is the superior
method. Even more important, Fourier spectroscopy is not
simply the application of another little invention; rather, it
marks a turning point in philosophy, away from high-pre-
cision delicate optics, toward a simple, rugged sensor cou-
pled with sophisticated electronic data processing.” Many
disciplines other than optics have also been assisted by this
powerful mathematical tool, since it is now possible to per-
form rapid conversion of time traces to the frequency do-
main, using the fast Fourier transform (FFT).? For exam-
ple, power spectra have become central to the study of
systems displaying deterministic chaos.®” In the realm of
image analysis, some engineers have focused much of their
career on computer techniques based on the two-dimen-
sional discrete Fourier transform (DFT).® In all of these
examples, which represent a very small fraction of the
whole world of Fourier processing, the advent of inexpen-
sive digital computers was prerequisite to making the nec-
essary computations practical. Numerous algorithms
based on the FFT are now available to take an analog to
digital converted voltage versus time record and produce a
spectrum from it. Typically, these records are at least 1024
samples, if the resolution is to be reasonable.

The present paper describes an unconventional way of
viewing the DFT. It facilitates understanding for those
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who are best served by visual aids. It has been successfully
used by the author for the past 4 years in teaching an under-
graduate optics course, as well as an experimental laborato-
ry in computational physics. As opposed to the “abstrac-
tion” of the complex exponential representation, it is based
on vectors. Most professionals with whom the matter has
been discussed have recognized that the resultant produced
by any DFT algorithm can be thought of as a set of vectors.
The author is not aware, however, of anyone else having
used vectors in this way for its development.

II. THEORY
For the present paper, the Fourier transform pair in x
and k is defined as

G(k) =Jm g(x)e™ " dx, (1a)

g(x) = —l—f G(k)e™ dk. (1b)
27 J_ ,

As noted in Guenther,® there are alternative forms in
which (1) the pair of equations is symmetric, by associat-
ing (27) ~'/? with each one; and/or (2) the positive and
negative exponentials are interchanged. The six different
forms (all acceptable) have been the source of confusion
for many students through the years.

The variable k, which is conjugate to the position vari-
able x, involves the spatial frequency £, as follows:

k=2xf, =2n/X, (2)
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