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Time evolutions of quantum mechanical states in a symmetric
double-well potential

Peter Senn
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{Received 5 December 1990; accepted 5 August 1991)

The time evolution of quantum mechanical states in a square well of infinite depth with a Dirac §
function at its center has been examined for cases where the initial state was localized in one of the
wells. Let well A denote the well in which the initial state is localized, and let P(¢) denote the
integrated probability density ¥*V in well A. For opaque barriers the time-dependent system is
adequately described by a two-state model in which only the pair of stationary states of even and
odd parity are considered whose wave functions in well A, apart from an arbitrary phase factor,
are largely identical with the wave function of the initial state. For P(¢) a harmonic oscillation is
observed whose frequency v, is well approximated by the well-known formula for the tunneling
frequency v, ~AE /h, where AE represents the energy separation among the pair of states in the
model. For the present model of a symmetric double well it has been shown that for highly
transparent barriers a three-state model can describe the time evolution adequately. The three
stationary states involved in this model are a state of odd parity whose wave function in well A is
largely the same as the wave function of the initial state and a pair of stationary states of even
parity which on the energy scale are immediately above and below the first state. In this three-
state model the function P() is a superposition of two sinusoidal functions with nearly identical
amplitudes and frequencies plus a constant. As a consequence, the amplitude of P(#) changes
harmonically. In the present model a § function has been used as a barrier in order to minimize the
mathematical detail involved in the time-dependent treatment. It is to be expected that the beating
in P(t) can be observed also in the time evolution of a state localized in one of the wells of a
symmetric double-minimum potential with a more realistic “low” barrier if the density of energy
levels near the energies of the levels to be considered in the corresponding three-state model varies

slowly with energy.

L INTRODUCTION

In discussions of patterns in the energies of stationary
states of a symmetric double well the simplest model in use
is the infinite square well with a Dirac § function at its
center

V(x) = (#/m)Qb(x), (D
for |x| <a and Vis infinite for |x| > a. Using the abbrevia-

tion k ¥ = (2mkE * )'?/#, the wave functions for the sta-
tionary states can be formulated as follows: "

¥, (x)
—A,sin[k.f(x+a)] for —a<x<0, (2a)
- {A: sin[k ;* (x —a)] for 0<x<a, (2b)
and
¥, (x)=A, sin(k, x) for —a<x<a, (3)

where 3" and ¢ are states of even and odd parity, respec-
tively. For levels of odd parity the solutions turn out to
remain unaffected by the presence of the barrier at x =0
and we obtain k, =aw/a with n=123,.. and
A o= a—1/2_1

For levels of even parity the first derivative of the wave
functions %, is discontinuous at the location of the 6 func-
tion and the appropriate boundary conditions give rise to a
quantization of the energy levels as follows:'?

S,cots, = — Qa, (€))
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where §, = k ; a. The levels obtained from (4) as a func-
tion of €la are shown in Fig. 1. The normalization factors
for the levels of even parity are

A, ={a[1- sin(2¢,)72¢,13 '~ (5)
The present work is concerned with the time evolution of a
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Fig. 1. Level positions for § functions of different strengths. Full lines
even, broken lines odd parity.
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state that originally is localized in one of the wells. For this,
the following wave function is used:

W(x,0) = (2/a)"?sin[(Nm/a) (x + a)] (6)

for —a<x<0 and ¥(x,0) = 0 otherwise. N is a positive
integer. The time-dependent wave function can then be
constructed from the initial wave function W (x,0) and the
wave functions for the stationary states as follows:?

V) =3 (Cr ot (e 507

- iE,,’t/ﬁ)

+C Y, (x)e , (7N

where
Cr= v (x)¥(x,0)dx. (8)

With the wave function of the initial state formulated as
shown in (6) all C, except Cjy, vanish, where
Cy=(=1N2712

The time evolution of the system for the wave function o
the initial state as shown in (6) will be examined with the

help of the degree of localization of the particle in the twe
wells as a function time

P(1) =J-O W (x,0)W(x,t)dx, (9)

where W* denotes the complex conjugate of ¥. In what fol-
lows the time # will be replaced by the dimensionless variable
7, where 7 = (#/2ma?*)t. The probability of localization in
the left-hand well as a function of 7 can readily be computed
as follows:

P(7) =1/4 + N7 Sén[1+2cos(uy, ], (10)
where uy, = (Nm)? — 2 and
£, = (1 — sin2£,/26,) " (sin &, /upy )2 (11)

II. APPROXIMATE RESULTS FOR OPAQUE
BARRIERS

If Qais large, i.e., if the barrier is opaque, then the coeffi-
cients £, in the sum in (10) are small with the exception of
£, such that P becomes a sinusoidal function of 7 and the
particle oscillates among the wells. For {la large we obtain
from (4) :

Ex=Nr[1 — (Qa)~ 1. (12)

Then uyy ~2N*7*/Qa. Let 75 ! denote the tunneling fre-
quency. The period of the oscillation among the wells be-
comes then 27/u ,, such that

To=~Qa/N *m. (13)

In Fig. 2 the probability of localization of the particle in the
left-hand well is shown for two cases. In both cases N =1
in the initial state but in one case the barrier is fairly trans-
parent in which case the oscillations in P are somewhat
irregular and the tunneling frequency is high. For the opa-
que barrier where Qa = 64P follows a regular sinusoidal
curve whose period of oscillation expressed in the dimen-
sionless measure of time 7 is roughly 20. This is in fair
agreement with the result of the above analysis because Eq.
(13) gives 7,~=64/7 = 20.4.
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Fig. 2. Probability of localization in the left-hand well as defined in (9) as
a function of the time 7 with N = 1 in ¥(x,0). The curve with the high
frequency of oscillation is for {}a = 1 and the one with the low frequency
of oscillation is for an opaque barrier with Qa = 64.

ITI1. APPROXIMATE RESULTS FOR HIGHLY
TRANSPARENT BARRIERS

For transparent barriers with £l small and/or large val-
ues of NV the oscillations in Pare modulated as shown in Fig.
3. In this case two of the coefficients £, in (10) turn out to
be relatively large and of roughly equal size, namely £, and
&n .+ 1- This can be inferred from (11) and the energy levels
depicted in Fig. 1. For small values of {2« and/or N large
we obtain

So=(n—P7[1+ Qa/(n—?r].
It can then be shown that*

P(7) ~const + a cos[ (/4 + 2Qa) 1] cos(N7>7),
(15)

(14)

0 . T

4
Fig. 3. Probability of localization in the left-hand well defined in (9) asa
function of 7 for @ = § and with N = 7 in the initial state.
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Fig. 4. Contour plot of the
probability density W*¥ as a
function of 7 (horizontal axis)
and the location x (vertical
axis) for Qa = 50and N = 2 in
¥ (x,0). The vertical separa-
tion among neighboring con-
tours is 0.25.
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where a represents some constant coefficient. We would
then expect to observe oscillations with a period 2/Nw
which incidentally corresponds to the classical frequency
of a particle with ak = N7 confined in a square well of
length 2a. According to (15) these oscillations are modula-
ted with an oscillatory function whose period is (7/
8 + Qa/m) . For the case depicted in Fig. 3 we obtain for
the period of oscillation 2/(77) = 0.091 in good agree-
ment with what is observed in Fig. 3. For the period of the
modulation we compute a value of 1.8 and the value ob-
served in Fig. 3 is indeed located somewhere between 1.8
and 1.9.

IV. CONCLUSIONS

For opaque barriers the tunneling frequency v, is in-
versely proportional to the strength of the barrier. In this
limit the tunneling frequency, i.e., the frequency with
which the system shuttles back and forth between the wells,
is related to the energy splitting AE among pairs of energy
levels of even and odd parity and with the same n by the
well-known formula v, = AE /h.>® From (12) and noting
that the corresponding level with odd parity is at
k ;- a = N we obtain for the period of tunneling 7,~Qa/
N ?7in agreement with the results obtained from (10) and
(11).

For “low” barriers, the period of oscillations approaches
the nonzero value 2/N# as (3a—0 and the oscillations are
modulated by an oscillatory function whose period is
roughly (7/8 + Qa/m) ~'. According to this, the modula-
tion persists if a— 0. Since (15) applies in the limit where
N is large it would seem appropriate to introduce some
purely classical concepts. For a particle confined in one of
the wells with an energy for which ak = N, the classical

230 Am. J. Phys., Vol. 60, No. 3, March 1992

N A s I e 2

14 16 18 20

velocity is #iNm/ma from which the period of oscillation in
the double well of length 24 is obtained as 7, = 2/Nr7 in
agreement with the approximate result obtained for small
values of Qa.

Figure 4 shows a contour plot of the probability density
V*W for an opaque barrier with g = 50 and with N = 2in
the initial state. The contour plot in Fig. 4 illustrates a
regular pattern typical for opaque barriers where the parti-
cle oscillates between the wells. Figure 5 depicts the proba-
bility density for a fairly transparent barrier with Qa = 0.5
and with N = 7 in the initial state. There we can observe a
basic pattern in which the particle is reflected at the walls at
x = — g and x = a. This regular pattern disappears in the
region where the modulation vanishes; but later the oscilla-
tions resume with a phase shift of roughly . This phase
shift is due to the reversal of sign of the modulation. In the
limit Qa— 0 the coefficients C,, in the expansion of ¥ (x,?)
are zero or small with the exception of C 5, C 5, and
C ¥, where the coefficients for the stationary states of
even parity are of roughly equal size. Interference in the
evolution of the relevant pair of stationary states of even
parity with wave functions ¥ (x) and ¢J , (x) gives rise
to a modulation of P(7) whose frequency depends on the
strength of the barrier but not on the integer N characteriz-
ing the initial state.

The reason why for small values of € only those three
states are important can be seen from the fact that for 2 -0
we have §, = k ;fa— (n — })m, from which according to
(11) we obtain the following:

£, ={mIN? — (n — 1/2)2]} 72

From the above formula it is apparent that in the expansion
for P(7) in (10) the terms with n = Nand n = N + 1 are
roughly of equal size and much larger than the remaining

(16)
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Fig. 5. Same as in Fig. 4 but for
Qa=])and N=7 in ¥(x,0).
The vertical separation among
neighboring contours is 0.5.
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terms. This is especially true if Vis large. In a mathematical
sense this means that in (10) we have a superposition of a
pair of sinusoidal functions with nearly equal amplitudes.

The periods u ,, of these sinusoidal functions are nearly the
same for large values of N. These conditions give rise to the
observed beating in P(r).* The coefficients C " in the ex-
pansion of the wave function #(x,0) are closely related to
the quantities £,. In a physical sense this means that as a
first approximation the three stationary states ¥y, ¥y,
and ¥, | aresufficient in the expansion of the time-depen-
dent wave function ¥(x,?) in (7). The stationary state /5

gives rise to a constant and the pair of neighboring states
Y5 and ¢3, , of even parity give rise to terms with sinusoi-
dal functions whose frequencies become 7 (N + 1/4) if
Q- 0. For a superposition of a pair of sinusoidal functions
the observed beating may arise if both the amplitudes and
the periods of oscillation are nearly the same, which in the
present example turns out to be the case for large values of
N. For more realistic symmetric double-minimum poten-
tials the time evolution of a state localized initially in a
particular well is expected to give rise to beating in the
integrated probability density P(7) if the energies of the
pair of stationary states of even parity to be considered in
the corresponding three-state model are almost equal dis-
tances apart from the energy level of the stationary state of
odd parity in between. Investigations of time evolutions of
symmetric static double-wells have indeed uncovered pat-
terns with regular alterations of collapse and revivals in
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P(7) or related quantities if the wave function is not initial-
ly symmetric.” These so-called quantum beats disappear if
the initial wave function is projected into each one of the
invariant subspaces of the evolution operator, and each
projection is considered separately.’

ACKNOWLEDGMENT

I am indebted to Dr. Roberto Marquardt of our depart-
ment for illuminating discussions and to an anonymous
Referee for a careful examination of the manuscript and
valuable and helpful suggestions.

'S. Fligge, Practical Quantum Mechanics (Springer-Verlag, Berlin,
1971), pp. 35-40.

2U. Oseguera, “Effect of infinite discontinuities on the motion of a parti-
cle in one dimension,” Eur. J. Phys. 11, 35-38 (1990).

3J. D. Chalk, “Tunneling through a truncated harmonic oscillator poten-
tial barrier,” Am. J. Phys. 58, 147-151 (1990) and references thexjein.

“From (14) we obtain uyy=~(N~1/4)7 —20a and uyy,,
=~ — (N + 1/4)7* — 2Qa. Since £y and &, ; are roughly the same we
can write P(7) =~const + (@/2) [cos(uyyT) + cos(uyy, 7)] from
which the result in (15) can readily be derived using the well-known
trigonometric formula cosa +cosfB =2cos[(a + B)/2]cos[(a
- B)/2].

SE. Merzbacher, Quantum Mechanics (Wiley, New York, 1970), second
ed., pp. 65-79.

SP. A. Deutchman, “Tunneling between two square wells-computer
movie,” Am. J. Phys. 39, 952-954 (1971).

"A. Peres, “Dynamical Quasidegeneracies and Quantum Tunneling,”
Phys. Rev. Lett. 67, 158-159 (1991) and references therein.

Peter Senn 231



