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which for analytic potentials may be calculated exactly or suitably ap-
proximated.

"For the special case a; =0, the solution (4) is replaced by
#;(x) = 4;x + B, leading to the matrix

M[x,a:O]s(’l‘ (1))

This is not the a = 0 limit of the matrix (6) which itself becomes singular
in this limit. However, the combination

Kla=0w]=M [x,a =0IM ~'[x + w,a =0]

G %)

T\ 1

is the sume as the @ = O limit of the K[ a,w] matrix defined in (10) and so
justifies setting a = 0 in that definition whenever necessary.

¥Some samples from the Cold Fusion literature are the paper by J. S.
Cohen and J. D. Davis, “The cold fusion family,” Nature 338, 705-707
(1989) and the three related articles of K. Ross and S. Bennington, T.
Greenland, and D. Morrison in “Solid state fusion (?)> Phys. World 2,
15-18 (1989).

°A.R. Lee and T. M. Kalotas, “On the feasibility of cold fusion,” Nuovo
Cimento A 102, 1177-1180 (1989).
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The spectrum and eigenfunctions of a particle moving in two dimensions under the influence of an -
external uniform magnetic field and in the presence of a “point interaction” is determined. This is
done after an elementary discussion of how to construct a “point interaction” in two dimensions
circumventing the well-known difficulties with the Dirac 8%(r) interaction.

The delta-function potential is used in the one-dimen-
sional Schrédinger equation to illustrate a number of inter-
esting features. In two and three dimensions, however, the
S-function potential is problematic: The usual limiting pro-
cedure for its construction does not work (see discussion
below). Recently, however, the theory of point interac-
tions (also called zero-range or contact interactions in the
literature) and its application to solid-state physics have
been subject of extensive studies.'~

The purpose of this paper is to solve the problem of a
charged particle moving in a plane subjected to a magnetic
field perpendicular to it and acted upon by an “impurity”
represented by a two-dimensional contact interaction. A
system like this has been used by Prange* in connection to
the quantized Hall effect. Prange,* however, uses for this
contact interaction a delta function that, as we will see,
remains “too strong,” even in the presence of a magnetic
field.

We first review the problem of defining a point interac-
tion in two dimensions without magnetic field. Our treat-
ment is very pedestrian and therefore should serve as an
introduction to more powerful methods presented in Ref.
2.

Consider a particle moving in a plane. Let’s introduce
polar coordinates ( p,d) and suppose that the interaction is
asquare well of depth ¥, and radius 8. Later, we shalllet ¥,
go to infinity and & to zero in such a way that the specified
energy of the unique bound state remains constant.
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We shall consider only S waves, as in the limit 5 -0 the
states with / #0 are unaffected by the potential.
The Schrodinger equation for the S waves reads

2
__hz_(d_'f+ii'./f_)=E¢, for p>4, M
2);1 d;2) p dp
# (dr/z 1d1/1)
_ B fe Y L 2 EY )\ |y=Ey f .
2m\ dp’ +p dp Volp =E¢, for p<

(2)
Suppose there is a bound state of energy | E, |, and as usual

call k = \2m|E, |/# and k, = \2m/F(| Vo] — |E, ).

The solutions of (1) and (2) are Bessel functions:
Iﬁ:KO(kp)’ forp>69 (3)
¥ = Jy(kyp), for p <. (4)

Now we have to match the functions and derivatives at
p = 8. Using’ the relations

Jo(2) = —J(2), (5)
Ki(z) = — K, (2), (6)
we get

— kol 1 (ko8)/To(kod) ] = — kLK, (k8)/Ko(k8)].(T)

If we now try to let § -0, assuming E, to remain finite and
in such way that |¥;|6>— A [so that our potential would
approach — A 8?(r)] we find that the left-hand side of Eq.
(7) behaves as®
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_k, Jy(ked) _NCem/P)A J,(Cm/R)A)
Tolked) 6 J,(C2m/F)A)

(8)

whereas the right-hand side behaves as’
— k[K,(k8)/Ky(k8) ] -{8[In(k6/2) +¥1}~', (9)
where ¥ = 0.5772 is the Euler constant. This shows that

the hypothesis that E, remains finite cannot be maintained
and that as mentioned before the delta function in two di-
mensions is “too strong.” So if we insist on having a bound
state with finite energy the only remedy is to make the left-
hand side of Eq. (7) to diverge at the same rate. For that we
let ko =/ 2m/#)([V,| — |E,|) diverge slightly slower
than 1/8; that is, we write

ko(8) = (1/8)f(ké),

where we want f(k6) -0 as § 0.
Replacing (10) in Eq. (7) and taking into account Eq.
(9) we have

— (1/8)f(kd) [J,(koS) /Ty (koS) ]
={8[In(k6/2) + 1} " + -,

(10)

from which we get
SA(kS) = —2/[In(k8/2) + 71, (11)

where k is determined by the chosen value of the bound-

state energy through k = /(2m/#)|E,|. This choice of
S(kd) amounts to taking

2m -2
—(|¥, —_— (12)
ﬁz(l ol = 1B, = 521 (k6/2) + 7'

which means, for § -0 that V,(5) is
2m 2 { ¥ )
2 V(8) ~ 1— + ) (13
w 0= In(k6/2) \"  In(k6/2) (19

So we see that we have a logarithmically weakening version
of the usual 8°(r) function. Scattering can now be calculat-
ed. For £> 0, Egs. (1) and (2) became

d2¢ 1 dy 2

= +k 0, 5, 14)

dp2 p dp V=0 p> (

d2¢ 14y 2

e + k¢ 0, 4, 15

dp2 > dp =0, p< (15)
where

=V2m/PE, k{=JQm/#)([V,| +E).

Solutions of (14) and (15) are

Y =AJy(k'p) + BNy(k'p), p>6, (16)
and

Yv=Jy(kip), p<é. (17)

Matching (16) and (17) and their derivatives at p = 6,
and taking into account that when 6 = 0 Eq. (12) holds,
we get

B/A=n/(2In\E,/E). (18)

Conmdermg the behavior of J,(k p) and Ny(k'p) for
large values® of p we see that Eq. (16) behaves as 4
(2/7k 'p)'? coslk'p — 7/4 + 8,] where 8, is the S-wave
phase shift.*” So we have that tan So= —B/A.

Consider now a particle moving in a plane and subjected
to a magnetic field B perpendicular to the plane.

Choosing  the  rotationally invariant  gauge
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A= —rXB/2 and polar coordinates the Schrddinger
equation reduces® (for S waves) to

d2¢ 1dy 2 2
—_— +A4 a 0,
dp2 > dp Y—apy=
where

= (2m/#*)E and a = eB /2ch.

Let’s now introduce a square well of depth ¥, and radius
and since the radius goes to zero we may neglect the term
a’p? inside the well. The depth ¥,(8) will be chosen as
given by Eq. (13).
_The solution for p > & that goes to zero as p— o« is
Yp=e U1 = 1/2a),1,0p%], (20)

where U(a,b,x) is the Kummer’s function® which is the
regular solution at infinity. For p < § we have

¥ = Jo(ko),
where
ko= 2m/F)(|V,| + E).

Using'® (d/dz)U(a,c,z) =
can calculate

lim 9¥/dp 2 1
s-0 ¥ p [logap®+ ¥~

(19)

(21)

—aU(a+ l,c+ 1,2) we

A/4a) —2y]’
(22)

where P [z] is the digamma function, that is, the logarith-
mic derivative of the I'[z] function.!' So matching the
logarithmic derivatives,

1 1 1 A
log6+710ga+—¢(——za—)—7
— lim( — 1 Jy(keS)
5-0 k06 J (k)
With our choice of V,(5), we get from Eq. (13) as §-0

1 /1) k2
1 ANk g,
¢(2 4 aa T

which determines the value of A, thus solving the problem.

It is easy to see that when k — 0 we get the energies of the
S states of an harmonic oscillator (the S states of the Lan-
dau levels). On the other hand, when a—-0 we get, of
course, a bound state at the energy E, .

The energy spectrum predicted by Eq. (24) can be de-
duced from a graph of the bigamma function #[z].'? From
this graph it can be seen that each A solving Eq. {24) corre-
sponds to an S state that is displaced from its Landau level
and lies between two Landau levels except for one level that
lies below all Landau levels. The other states in the Landau
levels are of course the unaffected / # 0 states. This is exact-
ly similar to the spectrum found by Prange.*

(23)

(24)
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A hybrid system that consists of an oscilloscope and a photodiode is used to demonstrate optical
bistability. The details of the experimental setup and its graphical solution will be presented.

I. INTRODUCTION

Optical bistability is a rapidly expanding field of current
research because of its potential application to all-optical
logic and because of the interesting phenomena it encom-
passes.” An optical system that possesses two different
steady-state transmission states for the same input intensi-
ty is said to be optically bistable.

Thus a system having the transmission curve of Fig. 1 is
said to be bistable between /, and I,. Such a system is
clearly nonlinear, i.e., I, is not just a multiplicative con-
stant times /,. In fact, if I, is between I, and I,, knowing I,
does not reveal I,. Nonlinearity alone is not sufficient to
assure bistability. It is feedback that permits the nonlinear
transmission to be multivalued, i.e., bistable.

An undergraduate experiment on optical bistability has
been reported using a PLZT modulator as the nonlinear
switch.” Here, we would like to present an interesting ex-
periment in which an oscilloscope and a photodiode are
used to demonstrate optical bistability.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2. The hybrid
optically bistable system consists of a student oscilloscope
(SCOPE-1) and a photodiode (DET) facing the screen of
the oscilloscope. The signal detected by the photodiode is
amplified by a preamplifier (AMP) whose circuit is shown
in Fig. 3. The amplified signal is then feedback to the Y
input of the SCOPE-1. .

The optical bistability can be observed by varying the
intensity or the horizontal position of the light spot on the
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screen. In order to monitor the optical hysteresis curve of
Fig. 1, a signal generator (OSC) with sine output is con-
nected to the X or Z input of SCOPE-1 to vary the horizon-
tal position or the intensity of the light spot on the screen.
For convenience, another oscilloscope (SCOPE-2) is used
to observe the optical switching. Under proper conditions
we can observe a hysteresis curve similar to Fig. 1; here, the
horizontal coordinate could be the horizontal position or
intensity of the spot, and the vertical coordinate is the sig-
nal detected by the photodiode. In order to have a clean

N

OUTPUT INTENSITY Ir

I’ I'
INPUT INTENSITY II

Fig. 1. Characteristic curve for an optical bistable system.
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