AMERICAN
JOURNAL

ﬁ:(‘,mu'.'!: (}J‘PHYS]CS
e S R

A new approach to one-dimensional scattering
T. M. Kalotas and A. R. Lee

Citation: American Journal of Physics 59, 48 (1991); doi: 10.1119/1.16705

View online: http://dx.doi.org/10.1119/1.16705

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/59/1?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
New Model of One-dimensional Completed Scattering and the Problem of Quantum Nonlocality
AIP Conf. Proc. 889, 283 (2007); 10.1063/1.2713468

Multiple scattering approach to one-dimensional potential problems
Am. J. Phys. 57, 230 (1989); 10.1119/1.16095

Dynamical correlation functions for one-dimensional quantum spin systems: New results based on a
rigorous approach
J. Appl. Phys. 55, 1874 (1984); 10.1063/1.333505

Transport approach to one-dimensional quantum scattering
Am. J. Phys. 45, 1091 (1977); 10.1119/1.10730

Approach to a Phase Transition in a One-Dimensional System
J. Math. Phys. 5, 127 (1964); 10.1063/1.1704057

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#EI
http://jobs.aapt.org Eﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=T.+M.+Kalotas&option1=author
http://scitation.aip.org/search?value1=A.+R.+Lee&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.16705
http://scitation.aip.org/content/aapt/journal/ajp/59/1?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.2713468?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/57/3/10.1119/1.16095?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/55/6/10.1063/1.333505?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/55/6/10.1063/1.333505?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/45/11/10.1119/1.10730?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/5/1/10.1063/1.1704057?ver=pdfcov

remarkable accomplishment that remains untarnished by
this curious error.

ACKNOWLEDGMENT

The author would like to thank Noel Swerdlow for his
invaluable help in this research.

! Philosophize Naturalis Principia Mathematica, hereafter abbreviated
Principia, was first published in 1687. I have used the English transla-
tion of 1729 of the third and final edition by Andrew Motte, revised by
Florian Cajori (Ref. 3). For prior editions of the Principia, 1 have used a
marvelous compilation by Koyré and Cohen (Ref. 11), which does a
meticulous job of reporting the three editions of the Principia, and the
various interleaved, annotated copies.

*Though we are mainly concerned with the final edition of 1726 which
was translated into English, it should be noted that the format of New-
ton’s argument evolved following the first edition, where the *“Rules of
Philosophy” and ‘“Phenomena” had not been separate (see Ref. 11).

*Sir Isaac Newton, Sir Isaac Newton’s Mathematical Principles of Natu-

ral Philosophy and his System of the World, translated by Andrew Motte
in 1729, edited by Florian Cajori (University of California Press, Berke-
ley, 1934), Book III, Prop. VII, p. 414.

4 Colin Maclaurin, 4n Account of Sir Isaac Newton’s Philosophical Discov-
eries (The Royal Society, London, 1748; reprinted by Johnson Reprint
Corporation, New York and London, 1968), p. 288.

* Reference 3, Book 111, Prop. VIII, Cor. I, p. 416,

®There is an interesting discussion about the lack of consensus on the
value of the solar parallax in Chaps. 12 and 13 of A. Van Helden, Mea-
suring the Universe (The University of Chicago Press, Chicago, 1985).

" Reference 6, pp. 143, 144.

8 Reference 6, p. 147.

° Reference 6, p. 152.

1°Reference 3, Book III, Prop. VIII, Cor. II, p. 416.

U'Sir Isaac Newton, Isaac Newton’s Philosophize Naturalis Principia
Mathematica, edited by Alexandre Koyré, I. Bernard Cohen, and Anne
Whitman (Harvard U. P., Cambridge, 1972), Vol. 2, p. 581 (note to
line 15).

'2Reference 11, Vol. 2, p. 567 (note to line 9).

"* According to Ref. 6, pp. 154155, the figure of 10.5" represents an
average of the upper and lower limits of 12 and 9 for the solar paral-
lax, as calculated by Bradley and Pound.
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An alternative approach to the one-dimensional scattering problem is presented in which the
potential is replaced by a sequence of flat barriers or wells. The resulting problem is solved exactly
and the transmission coefficient obtained via multiplication of a string of 2 X 2 matrices.

L. INTRODUCTION

The phenomenon of tunneling never fails to bring home
the magical nature of the microscopic world to new stu-
dents of quantum mechanics. The one-dimensional poten-
tial barrier of height ¥ and width w, treated in nearly all
introductory texts, suffices to dispel the classical illusion
that particles cannot pass through a barrier whose height V
exceeds their energy E. A simple solution of Schrédinger’s
equation shows that the wave function is zero neither inside
the barrier nor on the transmission side and hence that the
probability for tunneling is always finite.

For barriers more complicated than the simple fiat one,
which itself is exactly solvable, one usually resorts to ap-
proximation schemes as outlined for example by French
and Taylor' or somewhat more rigorously utilizing the
WKB method as in Bohm.? It is our purpose here to show
that even for this more general case of nonconstant poten-
tial, one need not go beyond the simplest exactly solvable
flat barrier, since an arbitrary one can always be made up,
to any level of approximation, from a string of individually
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constant barriers. We show that the composite effect is ob-
tained by multiplying a string of 2 X 2 real matrices, a cal-
culation that is easily envisaged and readily performed on
even the most humble PC. Furthermore, the method is im-
mediately applicable to calculating transmission/reflec-
tion coefficients for any potential that is nonzero over a
finite range and not just potential barriers, and as such
should represent an instructive and rapid way of exploring
the subtleties of one-dimensional quantum scattering.
Although the general approach of approximating poten-
tials by segments of constant height is not new, the system-
atic development of such a procedure enabling it to cope
with a large number of segments n, has to our knowledge
not been developed. Thus, for example, both Wichman®
and Gasiorowicz* use a string of flat barriers to arrive at
the standard approximation for the tunneling probability
through a nonconstant barrier, but they do not at the same
time develop the full potential inherent in the procedure.
Merzbacher,® on the other hand, introduces a 2 X 2 matrix
approach similar to our own, but then, due to an overem-
phasis of the single barrier transmission problem, fails to
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write down the equivalent of our real matrix K, where one
such matrix is defined for each segment and is parame-
trized by the height and width of that segment only. It is
this matrix which points the way to the ease and elegance of
a calculation with arbitrary ».

In Sec. IT we outline the general method of segments and
supplement this in Sec. III with some relevant comments
on the computer implementation of the procedure. In Sec.
IV we give the results of a sample tunneling calculation
that is currently of some topical interest.

I1. CALCULATION METHOD

We consider a beam of particles of mass m and energy E
incident upon a potential barrier from the left as shown in
Fig. 1. The continuous potential ¥(x) is segmented into n
discrete flat barriers each of width w and height V, taken as
the linearly interpolated mean value®

Vi={VIL+ (j— Dw] + V(L +jw)},
j=12,. ,n
The V; as drawn in Fig. 1 all satisfy ¥, > E. However,

there is no necessity for this as in a general tunneling situa-
tion one can have also V;<E in some segments. Defining

k=+2mE /#, (D
a;=\2m(V, — E)/#, j=12,.,n, (2)

Schrédinger’s time-independent equation within the jth
barrier is

—# d?
— 4V —E) (x)=0 3
( 2m dx* %0 &
and has the solution
'pj (x) =Ajeaix +Bje_ajx’ (4)

with 4;, B; as yet undetermined constants. To the left (in-
put) and right (output) of the overall barrier where
V(x) = 0, the solution is just

- ikx — ikx

¢in _Aine +Bine ’
_ ikx — ikx
¢oul - Aoul e + Bout 4 .

Clearly, we need to set the coefficient B,,, = 0 (unless we
assume further nonzero potential segments to the right).

The requirement that the wave function and its deriva-
tive be continuous at x =L, L + w, L + 2w, ..., L + nw,
establishes a relation between the A4,B coefficients. Thus
continuity of 1 and ¢’ at x = L leads to

ikL — kL a L —a L
A.e""+ B e "t=A4,e"+Be ",
. ; . i L —a L
ikA, e** — kB, e~ * =qa,4,e"" —a,B,e” .

We rewrite this in a convenient matrix form

ML,k (A‘") MI[L (A‘) 5
[ s ]Bin - [ ’all Bl H ( )
with the 2 X 2 matrix M[x,a] defined as
M[x,a]E(e o ¢ ,ax). (6)
ae —ae

The continuity condition at the next point x =L + w is
now immediately available as

A, A,
M[L+w,al](B):M[L—i—w,az](B) (7N
1 2

and so on for all other boundaries, up to the final one at
x = L 4+ nw where

A
) =MI[L + nw,ik ](B"“‘) . (8)

out

MI[L+ nw,a,,](B

From the series of matrix equations (5), (7), and (8) we
get immediately

n

Ain
(B )——-M "Lk IM [La, 1M~ '[L+wa,]

XM [L+wae, M [L+2wa,]
XM[L+ n—1wa,|M " '[L+nwa,]

V(x)
|
V3
A3 P
v ¥
1 /
4 v
. n
A N
in Aoul:
Ep—— =~ — e e Y R A
—ii_ - Fig. 1. Approximation of po-
n out tential by flat barriers.
L I#w L+2w L+3w Lnw o
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A e
><M[L+nw,ik](B°"). (9)

out
Defining the matrix

cosh aw

K [aw] E( — (1/a) sinh aw) ,

— a sinh aw cosh aw

(10)

which is real for both real and imaginary a, it is readily
shown that

M[Lo, M~ '[L+wa,]|=K[a w],
M[L+wa, M~ '[L+2wa,] =K [a,w],

etc., and hence we obtain the desired scattering relation in
the form

A.
(Bf") =M ~'[L,ik |K [a,,w]K [a,,w]

A
XK [, w]M [L + nw,ik ](B°“‘) .an

To calculate the transmission probability 7, we symbolize
the product of K matrices (to be evaluated by computer)

arising in (11) as
Q). (12)

S

Then in view of the boundary condition B,,, = 0, we need
only evaluate the (1,1) component of the matrix

Q
S

K[a,w]K][a,w] K|[a,w] E(;

M —'[L,ik ](; )M [L + nw,ik ]

in (11) to get
A, = 1e*™[(P+8) +i(Qk — R/k) 14,y (13)

As expected, this relation is independent of the overall po-
sition L of the barrier and leads immediately to the trans-
mission probability

Ao |2 4
4, ((P+S8)+ (Qk—R/k)?]

in

The above expression for the transmission probability T’
is valid not just for the purely tunneling situation wherein
V,>E in all segments j, but also for those potentials in
which some or all V; satisfy V;<E. The only effect of a
segment with ¥, < E is to make the corresponding a pa-
rameter imaginary, that is @ = i3, in which case the K ma-
trix (10) reduces to the alternative real form

, cos fw — (1/B) sin Bw
Klipw] = (ﬁsinﬁw cos Sw )

A whole class of nontunneling scattering situations may
thus be profitably tackled in addition to those where the
potential peak exceeds the particle energy.

T= (14)

(15)

111. PROGRAMMING CONSIDERATIONS

Tunneling calculations can often lead to transition prob-
abilities as small as 10~ !® or smaller, and in order to esti-
mate these correctly one needs to guard against the com-
puter program setting very small numbers to zero (e.g.,
10— * is zero in single precision BasIC). To overcome this
problem, we have found it convenient when multiplying
out the string of K matrices in (12), to extract for each
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“tunneling” segment ¥, > E a factor ¢ from the matrix
K [a;,w] by writing

K [ajw] ="K '[a;w], (16)
with the K ' matrix defined as

K'[a,w]

1
- l_e—Zaw
5 ( )

1
— (142
2 o4

(17)

a 1
_© l_e—Zaw -1 - 2aw
5 ( ) 5 (1+e™ %)

and then to use K’ instead of K for that segment in the
product (12). This means that the final transition proba-
bility has the modified form

T=T'e 2 (18)
where

T'=4/[(P'+8)*+ (Q'k—R'/k)*], (19)

with

(e &)
1 S ’
the modified product matrix in (12) and

GEwZaj. (20)

The sum in (20) is restricted to segments j for which
V; > E. The small number problem is now overcome since
the computer calculates the exponent — 2G separately.
For a pure barrier (i.e., all ¥, > E') G is in fact just the
numerical approximation to the usual Gamow integral

L + nw
GEJ V2m[V(x) — E |/# dx, (21)
L
with the factor e ~ ¢ supplying for most tunneling situa-
tions the dominant (small!) part of the transition probabil-
ity. The term 7' in our Eq. (18) is in this case seen to
represent a correction factor to the Gamow estimate e ~ *¢
for T.

One further practical consideration that needs attention
arises from the apparently singular form of the (1,2) com-
ponent of the K matrix (10) [or the K’ matrix (17)]
wherein the factor o ' on its own diverges when a—0
(i.e.,if ¥, =E for somej). However, the overall (1,2) term
in (10) and in (17) is nonsingular’ as may be seen from the
respective series expansion near a = 0, namely,

_ sinhow _ w(l _ (aw)? n (aw)* _ )’

a 3 5!
1= _w<1_ Qaw) | Qaw)’ _)
2a 2 3

Thus unlike the WKB approximation, the method of seg-
ments proposed here does not break down at or near the
classical turning point @ =0, and demands only that
whenever aw in a segment is less than some predetermined
small number (say, 0.01) then we evaluate the (1,2) ele-
ment of K or K’ using the appropriate series (with a suffi-
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cient number of terms to maintain the desired precision).
This action is readily built into a computer program.

IV. A SAMPLE CALCULATION

We consider the example motivated by the recently pro-
posed ‘“cold fusion” scanario® in a simplistic version of
which one deuteron tunnels head-on into the Coulomb
field produced by another. In the center-of-mass system
the potential seen by the incident deuteron thus takes the
Coulomb form

V(x) = e*/4me, x,

with incidence from the right (i.e., x decreasing). We as-
sume the potential to be cut offat x =1 A (corresponding
typically to the lattice spacing of metallic palladium within
which the deuterons are closely packed in a *cold fusion”
situation) and also at the nuclear fusion distance x =4 F
below which the Coulomb repulsion is effectively neutral-
ized by the attractive nuclear forces. We select the energy E
as 154 eV, thereby giving the incident deuteron about 1 eV
of kinetic energy in addition to the potential energy at equi-
librium lattice separation of 1 A.

Using mean values® to define the segment heights V,, we
list in Table I the computed values of 7', 2G, and T for
various segment numbers n. The convergence rate in # is
seen to be quite satisfactory in view of the steeply rising
nature of the Coulomb potential; for slowly varying poten-
tials convergence is much faster. It is noteworthy that 7’
here contributes about another two negative orders of mag-
nitude to 7T beside the exceedingly small Gamow estimate
exp ( — 2G), making the probability of this kind of D-D
tunneling highly unlikely. However, the situation can be
considerably improved by the addition of screening as
shown by the present authors elsewhere.’

V. DISCUSSION

In contrast to elementary treatments of potential scatter-
ing and the more rigorous WKB method that aims at find-
ing an approximate analytic solution for the wave function,
our presentation above supplies an exact solution to a prob-
lem that approximates the desired scattering situation. This
approximation improves as the number # of barriers/wells
increases, up to a practical limit governed largely by com-

Table I. The tunneling probability T and the correction T’ to the Gamow
factor for D-D penetration at 15.4 eV as described in Sec. IV. The table
shows convergence in the number of segments # into which the repulsive
Coulomb barrier is divided over the range 1 Ato4F.

n T . T=T'e ¢
100 0.034 L13x10~ '
200 0.027 296x10 '
300 0.023 1.03x10 '
400 0.021 1.87x10°'"
500 0.020 2.96x10 " '12
600 0.019 3.79x 10172
700 0.018 4.32x10-'2
800 0.017 5.02x10- "2
900 0.016 5.18x10-'"?

1000 0.016 5.81x10~ '
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puting time and roundoff errors. Computing time itself is
not a serious problem as instanced by our elementary inter-

- preted (slow) BASIC program which evaluates the transi-

tion probability for » = 100 potential segments in about 5
s, and for a calculation with # of the order of a few hundred
and utilizing standard 64-bit double precision arithmetic,
the roundoff errors may be virtually neglected.

In essence, our work reduces the analytic problem of
scattering to one that requires only straightforward alge-
braic steps. The residual task of encoding the algebra in a
high-level language such as BASIC, FORTRAN, or PASCAL is
not expected to cause real problems for today’s computer
literate students. A useful embellishment to a program is to
require it to treat not only prespecified analytic potentials
such as the Coulomb or Gaussian but also to handle an
arbitrary sequence of flat barriers and wells that one may
specify at will. In this way, by varying the particle mass m,
the incident energy E, the individual barrier/well heights
and their widths (obtained by adding more barriers/wells
with the same height and width), much valuable intuitive
understanding can be gained about a problem that is other-
wise far from mathematically transparent.

We emphasize again that all types of potentials are ca-
tered for by the above method. For those potentials that
contain one or more tunneling segments, the transition
probability is evaluated as a product of two separate factors
as in Eq. (18). When there are no tunneling segments,
G = 0 and T’ becomes the only contribution. Though it is
customary for the pure tunneling case to take e ~*° on its
own as a good order-of-magnitude approximation for T, it
should be pointed out that the correction factor T'’ can nev-
ertheless turn out to be quite significant. Taking the single
flat barrier as an example, 7'~ 16(a/k + k /a)?, for low
energies (k small) and high barrier (« large); in such cases
the factor 7’ can modify the Gamow part e ~ >** by signifi-
cant negative orders of magnitude. Thus for particles of
low energy, tunneling into a steeply rising potential such as
a Coulomb barrier discussed above, the correction factor 7’
turns out to be meaningful.

ACKNOWLEDGMENT

We would like to acknowledge the useful comments
made by the referees.

' A. P. French and Edwin F. Taylor, An Introduction to Quantum Physics
(Van Norstrand Reinhold, London, 1978), Chap. 9.

*David Bohm, Quantum Theory (Prentlce-Hall Englewood Cliffs, NJ,
1951), Chap. 12.

*E. H. Wichman, Quantum Physics (McGraw-Hill, New York, 1971),
pp. 287-292.

*Stephen Gasiorowicz, Quantum Physics (Wiley, New York, 1974), pp.
84-86.

*Eugen Merzbacher, Quantum Mechanics (Wiley, New York, 1970),
Chap. 6.

® A more realistic choice would be to take V; as the mean value

1 Lo+ ju

= Vix)dx,

/
W JL+ (- D
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which for analytic potentials may be calculated exactly or suitably ap-
proximated.

"For the special case a; =0, the solution (4) is replaced by
#;(x) = 4;x + B, leading to the matrix

M[x,a:O]s(’l‘ (1))

This is not the a = 0 limit of the matrix (6) which itself becomes singular
in this limit. However, the combination

Kla=0w]=M [x,a =0IM ~'[x + w,a =0]

G %)

T\ 1

is the sume as the @ = O limit of the K[ a,w] matrix defined in (10) and so
justifies setting a = 0 in that definition whenever necessary.

¥Some samples from the Cold Fusion literature are the paper by J. S.
Cohen and J. D. Davis, “The cold fusion family,” Nature 338, 705-707
(1989) and the three related articles of K. Ross and S. Bennington, T.
Greenland, and D. Morrison in “Solid state fusion (?)> Phys. World 2,
15-18 (1989).

°A.R. Lee and T. M. Kalotas, “On the feasibility of cold fusion,” Nuovo
Cimento A 102, 1177-1180 (1989).

Schrodinger equation in two dimensions for a zero-range potential
and a uniform magnetic field: An exactly solvable model
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The spectrum and eigenfunctions of a particle moving in two dimensions under the influence of an -
external uniform magnetic field and in the presence of a “point interaction” is determined. This is
done after an elementary discussion of how to construct a “point interaction” in two dimensions
circumventing the well-known difficulties with the Dirac 8%(r) interaction.

The delta-function potential is used in the one-dimen-
sional Schrédinger equation to illustrate a number of inter-
esting features. In two and three dimensions, however, the
S-function potential is problematic: The usual limiting pro-
cedure for its construction does not work (see discussion
below). Recently, however, the theory of point interac-
tions (also called zero-range or contact interactions in the
literature) and its application to solid-state physics have
been subject of extensive studies.'~

The purpose of this paper is to solve the problem of a
charged particle moving in a plane subjected to a magnetic
field perpendicular to it and acted upon by an “impurity”
represented by a two-dimensional contact interaction. A
system like this has been used by Prange* in connection to
the quantized Hall effect. Prange,* however, uses for this
contact interaction a delta function that, as we will see,
remains “too strong,” even in the presence of a magnetic
field.

We first review the problem of defining a point interac-
tion in two dimensions without magnetic field. Our treat-
ment is very pedestrian and therefore should serve as an
introduction to more powerful methods presented in Ref.
2.

Consider a particle moving in a plane. Let’s introduce
polar coordinates ( p,d) and suppose that the interaction is
asquare well of depth ¥, and radius 8. Later, we shalllet ¥,
go to infinity and & to zero in such a way that the specified
energy of the unique bound state remains constant.
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We shall consider only S waves, as in the limit 5 -0 the
states with / #0 are unaffected by the potential.
The Schrodinger equation for the S waves reads

2
__hz_(d_'f+ii'./f_)=E¢, for p>4, M
2);1 d;2) p dp
# (dr/z 1d1/1)
_ B fe Y L 2 EY )\ |y=Ey f .
2m\ dp’ +p dp Volp =E¢, for p<

(2)
Suppose there is a bound state of energy | E, |, and as usual

call k = \2m|E, |/# and k, = \2m/F(| Vo] — |E, ).

The solutions of (1) and (2) are Bessel functions:
Iﬁ:KO(kp)’ forp>69 (3)
¥ = Jy(kyp), for p <. (4)

Now we have to match the functions and derivatives at
p = 8. Using’ the relations

Jo(2) = —J(2), (5)
Ki(z) = — K, (2), (6)
we get

— kol 1 (ko8)/To(kod) ] = — kLK, (k8)/Ko(k8)].(T)

If we now try to let § -0, assuming E, to remain finite and
in such way that |¥;|6>— A [so that our potential would
approach — A 8?(r)] we find that the left-hand side of Eq.
(7) behaves as®
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