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Shift operators are derived for s states of the Hulthén potential. These operators are used to obtain
energy eigenvalues and normalized coordinate-space wave functions for bound s states. The
condition for the existence of these states is deduced from the Hellmann-Feynman theorem, and
this theorem together with the hypervirial theorem are used to calculate certain expectation

values.

I. INTRODUCTION

The operator method of solving quantum mechanical
problems is based on shift operators and results such as the
virial, hypervirial, and Hellmann-Feynman theorems.
This method has been applied to many of the quantum
mechanical systems that can be solved exactly, such as the
one-dimensional oscillator,! the theory of angular momen-
tum,” and other problems.**

In the case of spherically symmetric problems in an an-
gular momentum basis, the operator method has been used
for the free particle, the isotropic three-dimensional har-
monic oscillator, the Coulomb problem,** and certain gen-
eralized potentials.® If one considers just the s states of
spherically symmetric potentials, the centrifugal term in
the Hamiltonian is zero and, consequently, there are sever-
al more problems, such as the Morse and Rosen—Morse
potentials,” that can be treated by operator methods.

The purpose of this paper is to present an operator solu-
tion for the s states of the Hulthén potential

V() = — Vo{1/[exp(r/a) — 11} (1)

Here, ¥, and a are positive constants and » = (r-r)'/2 This
short-range potential provides a useful approximation to
the internucleon potential.® The Schrodinger wave equa-
tion can be solved analytically for s states of the Hulthén
potential and a wave-mechanical treatment for bound
states is given in the text by Fliigge.” To my knowledge, the
only operator analysis for this potential is that by Green
who used a factorization method to determine the energy of
the ground state.’

A brief summary of Green’s calculations is given in Sec.
II. In Sec. III shift operators are derived for s states of the
Hulthén potential and these are used in Sec. IV to obtain
energy eigenvalues for bound s states. The condition for the
existence of these states is deduced in a simple manner with
the aid of the Hellmann—-Feynman theorem. In Sec. V the
hypervirial theorem and the Hellmann-Feynman theorem
are used to calculate the coefficients in the shift operations.
Normalized coordinate-space wave functions are deduced
in Sec. VL.
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The operator calculations presented here provide an in-
structive alternative to the more traditional wave-mechani-
cal treatment. The operator method also has the merit of
simplicity. For example, the normalization calculations in
Sec. VI are almost trivial whereas normalization by inte-
gration is less so (see Sec. VI) and, in fact, is not given in
the wave-mechanical solution of Ref. 9.

II. THE GROUND STATE

For s states of a particle of mass M in the Hulthén poten-
tial (1) the Hamiltonian is

H= (12M)p? — Vo{1/[exp(r/a) — 1]}. (2)
Here,
p, = j(ip + pf)
=r ~Y(rp— if) (3)

is the usual radial momentum operator: It satisfies the
commutation relation

o, /] = — it (4)
dr

The energy eigenvalue equation is

H|E)=E|E). (5)
It is'convenient to define the dimensionless quantities

v= 2Ma*h—V,)""? 6)
and

A= (—2Mda*#h ’E)'~ (7)

For bound states (£ <0), A is real.
Green'® considered an operator C that annihilates the
ground state

C|E,) =0 (8)
and factorizes the Hamiltonian (2)
C'C=2M(H — E,). 9
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He showed that if p, is Hermitian, the operator
C=ip, —ta~'/[exp(r/a) — 1] + Ya '(v?*—1)
(10)
satisfies (9) provided
E, = — (#/8Md*) (v — 1) (11)
Equation (11) gives the energy of the ground state. The

condition for this state to existis v>> 1 (see Sec. IV). Thus
(7) and (11) yield the relation

vi=21+1 (12)
for the ground state.
In the coordinate representation
po=—i(2 1) (13)
dr r
and (8) is the first-order differential equation
d 1
a————————+/1)r r=0 14
( dr exp(r/a) —1 Yo (1) (14)

for the ground-state wave function ¢, (r) = {r|E,). Inte-
gration of (14) yields

Yo (r) =co(r/a) ~'(1 —e™")e 77, (15)
where ¢, is a constant. The normalization

f (t|°r* dr=1 (16)

0

requires

co=2a‘3/2[/1(/1+%)(/1+1)]‘/2. n
III. SHIFT OPERATORS

It is convenient to use the dimensionless operators

u=r/a (18)
and

p. = (a/F)p, (19)
that satisfy .

. d
[P flu)] = iy (20)
du

By multiplying both sides of (5) on the left by (1 — e ~“)?
and rearranging terms we can rewrite this equation in the
form

O,|nl) = —A%nd), 21)
where

O"=(1_e7u)2pi_(n2+12)e~u_+_n2e—2u’ (22)

n=(v:+4i%)"? (23)

and |nd ) denotes |E ).
We obtain shift operators by factorizing O, . Inspection

of (22) suggests that O, can be factorized by the operators
Af=4+i(l—e *“)p,+ne “+KJ}, (24)

where K F are independent of # and p,,. Using (20), (22),
and (24), a short calculation shows that

A7 A7 =0,+K K} (25)
and
An+7lAn_=0n +Kn+—1Kn" (26)
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where
Kir=K;, 27
= —(MP+n+13/C2n+1). (28)
It follows from (25), (26), and (21) that
AFnd)y=atf|n+1,1), (29)

where the coefficients @, F are independent of u and p,,.
These coefficients are calculated below (see Sec. V). Ac-
cording to (29) and (23) the shift operators 4 F transform
between eigenkets of the same A belonging to different po-
tentials (different v). (Thus thekets |#'A ) and |nd ) arenot
necessarily orthogonal.) Operators that transform
between the eigenkets of different potential wells are also
known for other potentials.”!

IV. ENERGY EIGENVALUES

Equations (12) and (23) show that for the ground state
By applying 4 /", |, 4}, ,, ... to the ground state |1 + 1,
A )oneobtainskets |4 + 2,4 ),|4 + 3,4 ),... . InSec. Vitis
shown that these kets are normalizable if the ground state is

normalizable. Thus for a given Hulthén potential (v fixed)
the values of » are

n=N+A+1, (31)
where
N=012,... (32)

[There is an upper limit to the value of N for which the
potential will bind the particle—see (37).] Equations
(31), (23), and (7) yield the energy eigenvalues for bound
s states

(33)

Bom - E (P WD)

T oM\ 2N+ 1)

For the existence of these bound states there is a condi-
tion on the parameter v. This condition can be obtained by
treating ¥, as a continuous variable and applying the Hell-
mann-Feynman theorem'? to (5)

<aH>:8EN. (34)
av, av,
Substituting (2), (33), and (6) in (34) we find

("= 1) H=[v2-(N+1)’I/2(N+1)>.  (35)

For bound states the left-hand side of (35) is positive be-
cause the average value of the potential (1) is negative.
Therefore,

vis(N+ 1% (36)

Thus for a given potential the number of bound states is
finite and determined by®°

Vo> (#/2Ma®) (N + 1)%. (37)

This method of determining the condition for a potential
well to bind a particle can also be used for other potentials
such as the Rosen—Morse potential.
V. THE COEFFICIENTS o

If the kets in (29) are normalized,

| P = (A [(4,;5)74 5 [nd). (38)
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Taking the adjoints of (24) and using (27) we have

(A =47 ,—2"" -(39)
and
A7) =47 +2 " (40)

Substituting (39) and (40) in (38) and using (25), (26),
and (21) we find

la P= (K, ) —A2—=2(e""4,}) (41)
and
la, |P= (K, ) —A*+2(e "4,7). (42)

To evaluate the expectation values on the right-hand
sides of (41) and (42) we require the expectation values of
e “(1 —e “)p,, e ** and e~ With the aid of the hy-
pervirial theorem these can be expressed in terms of (35)
(see Appendix),

(w‘”(l—e"“ﬂn>=~%(e““~2e‘“% (43)

(e ) =[P +312-1)/4(* = 1) (e "), (44)
and

e Yy =[2v¥/4n* — 1) ]{(e* — 1) 7 1), (4%)
In terms of #» and A, Eq. (35) is

("=~ HY=A4/(n—=4). (46)

Substituting Eqs. (24), (27), (28), and (43)-(46) in (41)
and (42), some straightforward though tedious algebra
yields

+
n

n—/iil( n
a J—

1/2
M+iﬂn+iiﬂ>,
2n + 1 n+1

(47)

where a phase factor has been set equal to — 1.
We now adopt a simpler notation by letting |V ) denote
|nA ). Then (29) becomes

AFINY=aF N+ 1), (48)
where
Ag=+ill—e p, + (N+A+De “+ K,
(49)

and a7 and K i are given by (47) and (28) with » re-
placed by (31). Because |ay |*>0 for N> 0 the eigenkets
[N) (N=1,2,...) are normalizable [provided, of course,
that (37) is satisfied] if the ground state |0) is normaliza-
ble. Also, ay = 0if N = 0 and therefore

Ag[0) =0. (50)

Equation (50) is the same as Eq. (8) with Cgiven by (10).

We remark that the shift operators 4 * can also be de-
rived by transforming (5) into one of the standard forms
considered by Infeld and Hull.!' (The appropriate form is
type E of Ref. 11.) This approach is lengthier than the ab
initio calculations performed above. Also, it turns out that
to calculate the coefficients aF by using Infeld-Hull fac-
torization, one has to evaluate (¥ ?) rather than (¥) as in
the above calculations. It is not clear how (¥ 2) can be
calculated by operator methods.

VI. COORDINATE-SPACE WAVE FUNCTIONS

In the coordinate representation the raising operation in
(48) becomes
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[(1 —e'“)(i+-l—)+(N+ﬂ+ De “+ Ky |¢.(u)
du u

=ay ¥y, (u), (51)
where ‘
Yy (u) = (u|N) (52)

is the coordinate-space wave function. Starting with the
ground state (15) it is straightforward to use (51) to calcu-
late the wave functions of the excited states. In (51) we let

Yn(u) =cou (1 —e™“)e gy (u), (33)

and we substitute the expressions for K § and a, . This
yields the recurrence relation

¢N+ 1 (u) =BNDN¢N(u)
where

B :((N+/l+2)(N+21+ 1)(N+2/1+2))V2
N (N+A+1)(N+2)? ’

(N=0,1,2, ..), (54)

(55)
DN=1—2N+M’+3x
N+24+41
AN+24+3 x(1—x) 4.
(N+2A4+1H)(N+2142) dx
(56)

and x =¢~ . From (15) and (53), ¢, = 1. Thus by re-
peated application of (54) we have

¢N(u) ZﬁN—l-..BlﬁOPN(x) (N= 1529"')9 (57)
where
Py(x)=Dy_, -"DD,l. (58)

We evaluate (57) in two parts. Consider first Py, (x). In
general, Py (x) is a polynomial of order N, and the first few
of these are given in Table I where we have defined
Po=¢y=1.

In terms of the hypergeometric function

2Fi(abiex)
2
—14 b x  alat DbG+D x| s
¢ 1 clc+1) 2!
the entries in Table I are given by
Py(x) =, F (= NN+ 24 4 2,24 + L;x). (60)

Using induction and (58) and (56) one can readily extend
(60) to all V.

Consider next the product of the B8’s in (57). With B8,
given by (55) this product is elementary and a short calcu-

Table 1. The polynomials P, for N=0, 1, 2. For N = 1 and 2 the expres-
sions for P, are calculated from (58) and (56).

N PN(.X)
0 1
1 1—2/1+3x
2441
) 1— 2(24A +4) 24+ 4)(2A +5) X*

24+ 1 QA+1)(24+2) 2
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lation yields
__T(N+24+1)
By_1"BiBo N+ DTA D
><((N+/1+1)(N+2/1+1))“2
A+DHI+1) ’

(61)

In writing down (61) we have used the result
(a+n)(a+Da=T(a+n+1)/T(a). (62)
Substituting (57), (60), (61), and (17) in (53) we obtain
the normalized Hulthén wave functions for bound s states,

_ DIN+244+1)
u) =q- 2

Un( (N+DITQ2A+ 1)

X(N+2A4+11" "Y1 —e “)e M
X, Fi(— NN+ 24 +224 + Lie™ ). (63)

We remark that to normalize these wave functions by
integration is not trivial. It can be done by expressing the
hypergeometric function in terms of Jacobi polynomials,
then changing variables and using tabulated integrals.
These calculations are similar to those for the Rosen—
Morse potential, which are given in Ref. 13.

[AN+A+1)
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APPENDIX

We use the method given in Ref. 14 to prove Egs. (43)-
(45). According to the hypervirial theorem'*

([W.H])=0. (A1)

Here the expectation value is with respect to the eigenkets
|E ) of H, and itis assumed that A is Hermitian with respect
to W|E ); otherwise, the operator W is arbitrary.

With W = g(r) and dg/dr = f, Egs. (A1), (2), and (4)
give

1. df>
=— (=L . A2
) 2 : <dr (A2)
Similarly, with
1 .,df
W= — i+
Sp, + 2 : dr
we obtain
# df df dvV >
2 2 A NE-W L= F)=0. Al
<4Ma'r3 +,( V)dr drf (A3

Using the dimensionless operators (18) and (19), and
choosing

f=e*(l—e"),
(A2) yields (43). Similarly, from (A3), (1), and (7) with

f= (l_e—u)2
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and
f=1—e""%
respectively, we obtain (44) and (45).
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