NS
ﬁ:(‘,mu'.'!: (}J‘PHYS]CS
e S R

The bound states of a segmented potential
T. M. Kalotas and A. R. Lee

Citation: American Journal of Physics 59, 1036 (1991); doi: 10.1119/1.16643

View online: http://dx.doi.org/10.1119/1.16643

View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/59/11?ver=pdfcov
Published by the American Association of Physics Teachers

Articles you may be interested in
Bound states of a finite periodic potential
Am. J. Phys. 68, 715 (2000); 10.1119/1.19533

Potentials and bound states
Am. J. Phys. 63, 256 (1995); 10.1119/1.17935

Bounds on the number of bound states for potentials with critical decay at infinity
J. Math. Phys. 31, 1177 (1990); 10.1063/1.528750

Are there negative bound states for the 1/r n potential?
Am. J. Phys. 51, 274 (1983); 10.1119/1.13284

Remarks on the Bound States of a Central Potential in Quantum Mechanics
Am. J. Phys. 31, 277 (1963); 10.1119/1.1969431

Explore the AAPT Career Center -
access hundreds of physics education and

other STEM teaching jobs at two-year and
four-year colleges and universities.

%#EI
http://jobs.aapt.org Eﬁ



http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://jobs.aapt.org/
http://scitation.aip.org/search?value1=T.+M.+Kalotas&option1=author
http://scitation.aip.org/search?value1=A.+R.+Lee&option1=author
http://scitation.aip.org/content/aapt/journal/ajp?ver=pdfcov
http://dx.doi.org/10.1119/1.16643
http://scitation.aip.org/content/aapt/journal/ajp/59/11?ver=pdfcov
http://scitation.aip.org/content/aapt?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/68/8/10.1119/1.19533?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/63/3/10.1119/1.17935?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/31/5/10.1063/1.528750?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/51/3/10.1119/1.13284?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/31/4/10.1119/1.1969431?ver=pdfcov

teach introductory relativity. But what is this £E,/c? term
in calculating the invariant mass of a system? And how
many sophomore and junior students will understand a
four-vector approach in the limited time available? Such
students often use two-vectors well, but still have trouble
with three-vectors. Won’t beginning their modern physics
instruction with four-vectors make things unnecessarily
difficult and obscure the subtle concepts of relativity by
moving even further from their experience?

Relativistic mass paints a picture of nature that is beauti-
ful in its simplicity. We should continue to use relativistic
mass along with consistent interpretations of Newton’s
second law and E = mc? in introductory courses. Insisting
on its removal as a useful tool from all textbooks, as Okun
does,'? is a form of unnecessary censorship.
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The method of potential segmentation previously developed for scattering situations, is extended
to the computation of one-dimensional bound states. The energy eigenvalues are determined by
the zeros of a specific transcendental function while the corresponding eigenfunctions are
supplied with the aid of a series of 2 X 2 matrix equations.

In a recent communication to this Journal' we outlined
the procedure of potential segmentation as it applies to the
problem of one-dimensional quantum scattering, empha-
sizing the ease and elegance of this method for the compu-
tation of transmission probabilities. Here we wish to show
that the same procedure is readily extended to the calcula-
tion of energy eigenvalues and eigenfunctions associated
with one-dimensional bound-state problems involving po-
tentials of arbitrary shape. Such a typical binding potential,
shown in Fig. 1, is taken to be generally nonconstant in the
range L <x < R(=L + a) and to be of fixed value V',V
(nonequal in general) in the left and right bounding re-
gions respectively, On breaking up the nonconstant part of
the potential into » segments having “average” heights V;
as outlined in Ref. 1 and of equal widths w = a/n (see Fig.
1) and taking over all definitions and symbols appearing in
Ref. 1, we arrive immediately at the series of 2 X 2 matrix
continuity conditions
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M [L,aL](;z) =M [L,al](‘;i) '
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Here, the only difference from the corresponding scatter-

ing equations (5), (7), and (8) of Ref. 1 is that in the left
and right regions of the potential we have replaced the pa-
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V(x)

Y FIG. 1. A general bounding potential
F and its segmentation.

L Ltw L+2w

rameter ik=2m( — E) /# of scattering according to
left: ithk—a,=\2m(V, —E)/#,
right: jk—a,=2m(Vy — E)/#.

Correspondingly the wave functions in these regions are
also replaced as

¢in - 'ﬁL EALeaLx + BLe - aLX)

You =~ Yr =Age™™ + Bre ™ °%. (3)
Clearly for bound states (for which a,,a; are real) the
required vanishing of ¥, asx— — o and ¥y asx— + oo,
demands that

B, =4y =0. 4)

Then on eliminating from (1) the intermediate coefficients
A;,B; for j = 1,2,...,n, we obtain the equation

(2)

A 0]
(OL) =M—1[L,aL]HM[R,aR](BR), (5)
where IT is the 2 X 2 product matrix
M=Kl[a,w]K[a,w] K ][a,w]. (6)

Since for a nontrivial solution the coefficient B; cannot be
zero, we conclude from (5) that the (2,2) component of
the matrix product M ~'[L,a, ]TIIM [ R,ay | must vanish,
a condition which on simplification reduces to

QE)=la,ar — (11, + Iag) + 11, =0.
(7
This single® condition determines a// the bound state en-
ergies E as the zeros of the function ) (E) for any segment-
ed potential configuration. It is apparent since E enters
indirectly into every symbol appearing in ) via the param-
eters a,,a,,...,a,,&; &g, that Q itself is in general a compli-
cated transcendental function for all but the simplest cases
of n =1 or 2 segments [for which the condition (7) re-
duces to the standard textbook examples of single and dou-
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R=L+a

ble rectangular wells]. Bounds on the eigenvalues E are,
however, readily obtained by the computer monitoring of
the function Q(E) over a grid of energies extending up-
ward from the lowest potential value to the lower of
V.,Vs, with an eigenvalue located between two such grid
values whenever £} (E) changes sign over that pair of val-
ues. With successive refinement using a finer grid each
time, one rapidly improves the bounds and ultimately pre-
cision is limited only by round-off errors. In such a calcula-
tion the elements of I1 are evaluated directly as the product
of n real 2 X2 K matrices as in (6) with each taking either
the “hyperbolic” or “circular” form as discussed in Ref. 1.
Only minimal programming skills are required for this
straightforward computation. ‘

The condition (7) immediately leads to three useful var-
iants wherein one or both of ¥,V become infinite. Thus
for

(i) V. - 0,V = finite: We divide (7) by a; and set
a; — o« to get the eigenvalue condition

QL(E)EHnaR —H11=0. (8)

(ii) ¥V, =finite, ¥V — «o: We obtain by a procedure
similar to (i)

Qr(E)Y=Ha;, — M, =0. )]

(iii) ¥V, — o0,Vg = wo: We divide (7) by a,a, and set
a; - w,ay — o to get

Q,(E)=II,,=0. (10)

Again, it is easily verified for the simplest case n = 1 that
these conditions coincide with the corresponding textbook
examples of a single rectangular well with one or both
bounding walls of infinite height.

Once an eigenvalue E is determined, the corresponding
eigenfunction follows simply on evaluating the 4,B coeffi-
cients of (1). For this purpose it is convenient to rewrite
these equations in the form
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R

Then, on selecting the normalization by fixing the value of
B, (e.g., B = 1), one can evaluate the 4,B coefficients
directly. It should be noted that all products of K matrices
that arise in these equations have already been computed in
the preceding eigenvalue calculation stage and they need
only be saved there in order to avoid their recomputation in

(11). Essentially only real arithmetic is needed throughout
this calculation.

For the three subcases (i)—(iii) listed above involving
one or two infinite bounding potential walls, the defining
equations (1) need to be modified as follows:

(i) The first matrix equation of (1) is to be replaced by

B /4, = —&E, (12)
(ii) The last matrix equation of (1) is to be replaced by
B,/4, = — &%, (13)

(iii) The first and last matrix equations of (1) are to be
replaced by (12) and (13), respectively.

These conditions are sufficient to ensure that the wave-
function always vanishes at an infinite bounding potential
wall.> The subsequent solution of the 4;,B; then proceeds
along lines similar to that outlined above.
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Polynomial expansions are used to approximate the equations of the eigenvalues of the
Schrodinger equation for a finite square potential well. The technique results in discrete,
approximate eigenvalues which, it is shown, are identical to the corresponding eigenvalues of a
wider, infinite well. The width of this infinite well is easy to calculate; indeed, the increase in width
over that of the finite well is simply the original width divided by the well strength. The
eigenfunctions of this wider, infinite well, which to first order has the same width for the ground
state and all excited states, are also good approximations to the exact eigenfunctions of the finite
well. These approximate eigenfunctions and eigenvalues are compared to accurate numeric
calculations and to other approximations from the literature.

I. INTRODUCTION

The solution of the time-independent Schridinger equa-
tion for a one-dimensional finite square potential well is an
important example of a one-dimensional bound-state prob-
lem. The eigenfunction ¢ of a particle in a well of width a
and depth ¥, obeys the time-independent Schrédinger
equation

_#\dy _ |
( Zm) g TV V=Ed M
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with % Planck’s constant divided by 27, m the mass of the
particle, ¥(x) the potential energy, and E the total energy
of the particle. Various authors provide graphical solutions
to this problem.'® Eisberg and Resnick’ give the presenta-
tion most often seen in undergraduate quantum-mechanics
texts. They solve Eq. (1) for the given potential well sub-
ject to the usual continuity conditions and obtain

atana = (P> —a?*)'?, (2)
for the even-parity solutions, and
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