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Tunneling through a truncated harmonic oscillator potential barrier
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The sum of a one-dimensional, truncated harmonic oscillator potential and square well of the
same range, defined in the positive half-space, serves as a convenient and instructive example for
which the Schridinger equation may have both bound-state and continuum solutions. A
superposition of these solutions is used in a study of barrier penetration by a wave packet
representing a particle with an initial position in the region of the potential well. The presence or
absence of a bound state in the superposition is shown to be the key factor determining the
evolution of the wave packet. If no bound state exists, the probability of the particle having a
position within the potential well is a monotonically decreasing function of time. If the
superposition includes a bound state, however, this probability oscillates slightly because of an
interference between the bound-state and continuum components of the wavefunction.

L INTRODUCTION

A potential function of rectangular shape is a natural
choice for an introduction to the tunneling phenomenon
because of the mathematical simplicity provided. The rec-
tangular barrier and square well have been used in discus-
sions of the propagation of a wave packet through a poten-
tial.'"™ In such a discussion, a sequence of “snapshots” of
the probability density || provides a very satisfying quali-
tative view of the evolution of the packet during the tunnel-
ing process.

Although the truncated harmonic oscillator potential
involves familiar and simple power-series solutions of the
Schrédinger equation, it seems that this potential function
is overlooked as a useful potential for a pedagogical study
of tunneling.>® A sum of truncated harmonic oscillator po-
tential and square well of the same range was used in this
article to study the barrier penetration of a wave packet
representing a particle with an initial position in the region
of the potential well. The investigation was prompted by
the author’s desire to present to a class in quantum me-
chanics an interesting alternative to a rectangular potential
and an example that emphasizes the continuum solutions.

The potential function considered restricts the motion of
a particle of mass m to the half-space x>0:
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0, x<0,
Vix) =1 -V, +ime’x’>, O<x<a, (N
0, S x>a.

Here, ¥, is the maximum potential depth, a is the range,
and o is the angular frequency. The initial task will be to
find bound-state and continuum solutions of the Schro-
dinger equation. A significant convenience of this potential
is the fact that the solutions for the region within the well
and in the region of the barrier are one and the same, and
can be written down immediately, since they involve the
same power series encountered in deriving the solutions for
the linear harmonic oscillator. The series is not truncated
in this case, however, so that the solutions do not involve
Hermite polynomials.

Two sets of potential parameters are considered so as to
allow either one or no bound states. Analysis of an assumed
initial wavefunction in terms of the two complete sets of
energy eigenfunctions will reveal a pronounced difference
in the structure of the packets, and the evolution of the
packets will differ accordingly. Particular attention is giv-
en to the varying probability of the particle having a posi-
tion within the potential barrier. The results for the two
potentials, presented graphically, provide the basis for the
final discussion.

© 1990 American Association of Physics Teachers 147



II. ENERGY EIGENFUNCTIONS

In order to solve the Schriodinger equation with the po-
tential function of Eq. (1), it is convenient to introduce the
parameters a = (mw/#)'?, { =aa, and y,= Vy/#w,
along with the dimensionless variable £ = ax. Also, the
number # is suitably defined by the relation

E+Vy=(n+1)o. (2)

Accordingly, the Schrodinger equation for the interior re-
gion may be written as

d*yp 2
~+(@2n+1-69¢=0, 0<§<g,
dg

which will be recognized as the same equation encountered

in treating the linear harmonic oscillator. If allowance is

made for the boundary condition ¢(0) =0, one then
writes down odd solutions of the familiar form’

(3)

Y, =4, ‘E)e 7 0<f<l, (4)
where v, (£) denotes the series
v, (&) =& —[2(n—1)/31]&°
+[22(n—1)(n—3)/51E° + -+, (5)

and A denotes a normalization constant. Equation (4) ap-
plies both to positive and negative energies. Using the fact
that there is no physical solution for E < — V,, one infers
from Eq.(2) the inequality — 1 <n <y, — 1 for negative
energies and n > ¥, — 1 for positive energies.

Now, in the linear oscillator problem the condition that
1’ be well behaved as £ becomes large leads to the restriction
of n to integer values, and Eq. (5) is used to introduce odd
Hermite polynomials. The potential here is truncated at
£ = £, however, so there is no such boundary condition to
restrict n, and the series represented by (5) must be regard-
ed as infinite. The number of terms that must be included in
a numerical evaluation of v, will depend on the magnitude
of £ as well as the precision demanded.

In the exterior region, the potential vanishes and the
Schrodinger equation may be written as

d 2

dglf — Qyo—2n—1D)¢p=0, £>¢.
Looking first at the bound-state problem, one writes solu-
tions of (6) in the form ¢, = Fexp[ — («/a)£], wherex/
a = (2y,— 2n — 1)'/?, and F is a constant. From the re-
quirement that ¢, and dy, /d¢ be continuous at § = ¢, one
obtains two equations for 4 and F, which will be compati-

(6)

ble only for certain energies. One thus finds that the al-
lowed values of n are the roots of the transcendental equa-
tion

v, (§) + (k/a—{)v,(§) =0.

One must also impose the normalization condition

[ a1

Then, using the continuity of ¢ at £ = to express F in
terms of A, one derives

|4 | =al/2(f§vze_§*d§+u_n(_§_)zi)l/z'
o " 2(x/a)

The integral appearing in this expression for |4 | must, of
course, be computed numerically.

It was found that specification of the potential depth and
range parameters ¥, and { is sufficient for a determination
of a'/*, (x), and, for the purpose of graphing, the param-
eter a was set equal to unity. With o regarded as fixed, two
sets were selected, namely,

(1) =175 ¢=5"7,

(2) vo=125 ¢=2.

For the first set, Eq. (7) allows only one bound state, and
for this state »# has the value n, = 0.944 77 (including here
only five significant figures). In the calculation of v, ({)
for n in the neighborhood of n,, it was found that 29 terms
were sufficient to represent this series, and hence determine
n,, to an accuracy of 13 significant figures.

In the case of positive energies, the plane-wave solutions
of Eq. (6) are characterized by the wavenumber
k=a(@n+1—2%,)"% and one may write 9,

= Bexp(iké /a) + Cexp( — ik& /a), where B and C are
constants. The continuity conditions at £ = { may be used
to derive the ratio

B/C= — e—2ika(w/w*) ,
where
w=uv,(§) — (&—ik/a), ().
It is convenient at this point to write w = |wle
thereby introducing the phase shift §.° One may then derive
¢’n - C(ei(kx+26) _ e—ikx)’ x>da.

The choice C = — Ne ~ ' /2i, where N = (2m/m*#E)"'*,
provides the so-called energy normalization.” That is, the
continuum solutions,

(N

itka + &)
y

B
Nsin(ka + 8)v, (ax)exp( — a*x*/2)
> » O<x<a,
Ye(x) = v, (§exp( —§7/2) (8)
Nsin(kx + 8), x>a,
r
satisfy the relation III. EVOLUTION OF A WAVE PACKET
- . = '_B). 9 With the energy eigenfunctions determined, the stage is
L Ve (X5 (x)dx=0(E ) ® now set to study the barrier penetration of a wave packet.

The reader should bear in mind the relation between £ and n
given by Eq.(2) in ascertaining the dependence of ¢ on the
energy. The series v,,, k, and & are all naturally regarded as
functions of n and are conveniently computed as such, but
they are also functions of E in view of this relation.
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The assumed initial wavefunction, chosen so as to repre-
sent a particle with a very small probability of its position
being outside the potential well, is simply expressed as

¥(x,0) = C'xe "**%, (10)
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where C’ = 2(1.8a)?/? in order that the function be prop-
erly normalized. A graph of this function is shown in Fig. 1
superimposed on graphs of the potential function and
bound-state wavefunction.

The construction and propagation of wave packets is
well discussed in textbook literature.'® For the case that
one bound state exists, the wavefunction for £>0 is written
as the superposition

Y(x,t) =C, ¢, (x)e

— iE, 1/

+ f C(E) Yy (x)e F/" dE, (11)
0

where the coefficients C, and C(E) are determined from
an analysis of the initial wavefunction in terms of the
bound-state and continuum energy eigenfunctions:

€= [ b s 0
and ’
C(E) = f: Ye ()P (x,0)dx .
After some elementary integration, one finds

’ (9
€., =S [ o, @ ¥ g
0

+C1F‘12 (U+ l)e-—a

02 b
Gsin(ka + 8) fg
v, (E)exp(—£%/2) Jo b ($)5
2
1.86 — € /2>d§ N
2
(1.8)2 — (k/a)?
(1.8)2 + (k/a)?

2(1.8) (k /)
(1.8)2 + (k/a)z)cos(ka +5)] ’
(13)

(12)

C(E) =

Gle '

Xe"p( - (1.8)" + (ka)?

X[(1.8§ ¥ )sin(ka+5)

+<ka+

where o = (1.8 + k/a)¢ and G = C’N /a’. Use may be
made of the series (5) for v, in numerically computing the
integrals appearing in (12) and (13). The final result ob-
tained for the bound-state coefficient in the case of the first
potential function is C,, = 0.911 82, thus showing that the
bound state contributes in a major way to the superposi-
tion. Equation (13) applies to both sets of potential param-
eters, and the computer results for C(E) in the two cases
reveal a pronounced difference in these functions, as shown
in Fig. 2. It should be pointed out that the reversal in sign of
C(E) is due to the change in presence of a bound-state
component and is not the result of a change in normaliza-
tion sign of the functions ¢ . For both potentials the func-
tion C(E) rapidly decreases in magnitude and approaches
zero as E becomes large.

After the coeflicients C, and C(E) are obtained, it is
very comforting to verify the relation

IC,. +f IC(BYPdE=1,
0
thereby confirming the completeness of the set of eigen-

functions used in constructing the wave packet. The close-
ness of the check depends, of course, on the accuracy with
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Y (x.0)

V(%)

Fig. 1. Initial wavefunction. The graph of the assumed initial wavefunc-
tion is superimposed on graphs of the potential function and bound-state
wavefunction. This function is expressed as
¥(x,0) = 2(1.8a)*/%xe ~ ¥, The potential function V(x) is the sum of
asquare well of depth ¥, and a truncated oscillator potential Jme’x?, both
of range a. The parameter V,, is equal to 1.75%w and a?a*> = mwa*/#fi = 5.
For x<a, the bound-state wavefunction ¢, is proportional to
v, (@x)e™“*7?, where v, (cx) denotes the same power series encoun-
tered in the linear oscillator problem, but characterized by the number
n,=094477. For x>a, ¢, is of the form e~ *,
k=a(2.5—2n)"2

where

which the integral is approximated by a discrete sum. For
the case in which there exists one bound state, the sum of
coefficients squared was found equal to 0.999 98. For the
other case, this sum was computed to be 0.999 86.

The final computation of ¥(x,?) for a number of differ-
ent times employs Eq. (11) and makes use of the results
obtained earlier for C, and C(E). The numerical integra-
tion here is burdensome since the upper limit is infinite.
The integral converges fairly rapidly, however, because of
the smallness of C(E) for large #, and, in fact, good results
(accurate to three significant figures or better) are ob-
tained if the integral is truncated at about n = 120.

The evolution of the initial wavefunction was thus deter-
mined for the two potential functions considered. Graphs
of the probability density |¢(x,7)|? for the two cases are
shown in Figs. 3 and 4 for four different times. These
graphs should be viewed in conjunction with those of Fig. 5
where the probability of the particle having a position with-
in the barrier,

0.6
cE®
0.3
No bound state
0.0
One bound state
-0.3 T 1
0 10 20
£
hw

Fig. 2. Continuum coefficients. The initial wavefunction of Fig. 1 is ana-
lyzed in terms of the energy eigenfunctions, thereby yielding continuum
coefficient functions of the energy. The coefficient function, denoted
C(E), is positive for all energies if no bound state exists, and is negative for
all energies if there is one bound state.
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wt =76 wt =50

Fig. 3. Evolution of the wave packet of Fig. 1 for the case in which there
exists one bound state. The graph of the probability density |¢/(x,t)|? is
superimposed on the graph of the corresponding potential function and is
shown at four different times.

P.(1) =f (0|2 dx, (14)
(¢]

is plotted as a function of z.

IV. DISCUSSION

The graphs of Fig. 3 represent the propagation of the
wave packet in the case where there is a bound state, which
in fact dominates the superposition. It is observed that the
shape of the packet changes rapidly at first as an increasing

wt =6.0 wt =24

Fig. 4. Evolution of the wave packet of Fig. 1 for the case in which there is
no bound state. The graph of the probability density |#(x,?) | is superim-
posed on the graph of the corresponding potential function and is shown
at four different times.
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portion of the probability appears outside the barrier. The
peak of the distribution moves to the right initially and then
rebounds slightly to the left, where it remains stationary.
After a long time has passed (wf = 50, say), the positive-
energy components have tunneled through the barrier and
only the bound-state component remains in the neighbor-
hood of the barrier. The decrease in the probability P, (1) is
not monotonic, however. Figure 5 shows that this function
passes through two minima, thus underscoring the oscilla-
tory behavior of the packet during the tunneling process.

The graphs of Fig. 4 depict the tunneling in the case
where only positive-energy eigenfunctions contribute to
the superposition. The height of the probability distribu-
tion steadily decreases as an increasingly large percentage
of the probability is removed from the vicinity of the bar-
rier. Not really discernible from the graph is a reversal in
the direction of motion of the peak at w¢ = 1.5 and again at
wt = 2.8. Nevertheless, the function P, (¢) monotonically
decreases with time in this case, as shown in Fig. 5.

The behavior of the probability P, (¢) can be understood
if one substitutes in the integrand of (14) the expression for
¥(x,t) given by (11). One finds that the expression for
P, () reduces to a sum of three terms:

P(1)=C} fﬂ ¥, (x)?dx + fa dx Jw C(E)¢g (x)dE
0 0 4]
XF C(E") g (x)cos((E_TE')’)dE'
(6]

+2C, f ¥, (x)dxf C(E)Yg(x)
0 0 .

X cos(%)dE .

The second term will monotonically decrease with the pas-
sage of time since the factor cos[ (E — E ')t /#] oscillates
more rapidly as ¢ increases. The third term in (15) will also
tend to decrease because of the factor cos[ (E — E,)¢t /#],
but this same factor provides a modulation of the magni-
tude so that the decrease is not monotonic. Of course, the
first and third terms are not present if there is no bound
state.

In summary, the combination of square well and trun-

(15)

0.8 One bound state

0.6

0.4

0.2

No bound state

Fig. 5. Probability of the particle having a position within the barrier for
the cases in which there exists either one bound state or no bound state.
The probability is expressed as P, (t) = §&|¢(x,t)|* dx, where a is the
range of the corresponding potential function.
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cated harmonic oscillator potential of the same range pro-
vides a convenient and instructive example of a quantum
mechanical system for which exact bound-state and posi-
tive-energy solutions may be obtained in closed form. In a
pedagogical study of tunneling, the model provides a
graphical example of the way in which the positive-energy
components of a wave packet “leak” through the barrier,
leaving the bound-state component behind. Finally, an in-
terference between the bound and continuum states is
shown to underlie oscillatory variations in the probability
of the particle being found inside the potential barrier.
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The effects of coefficient of restitution variations on long fly balls
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The coefficient of restitution of major league baseballs is required to be 0.546 + 0.032. These
allowed variations affect the launch velocity and ultimately the range of fly balls. The variations in
the range for well-hit balls are calculated here to be on the order of 15 ft. These calculations
provide an interesting collection of mechanics problems that might be of interest for

undergraduate students.

L INTRODUCTION

The coefficient of restitution for a collision is the ratio of
the final relative velocity to the initial relative velocity of
the colliding objects. The coefficient of restitution of a ma-
jor league baseball is required to be 0.546 + 0.032."2 The
question raised here is how will the allowed variations in
the coefficient of restitution affect the distance traveled by
a well-hit ball?

The first step toward the answer is to find the effect of
coefficient of restitution variations on the velocity of the
ball as it leaves the bat, referred to here as the launch veloc-
ity. Next, the range for a baseball as a function of the
launch velocity must be studied. To keep some resem-
blance to reality, air resistance must be included. Finally,
the two results can be put together to find the variations in
the range due to fluctuations in the coefficient of restitu-
tion. Since the interest here is just the variations in the
range, as opposed to the values of the range, and because it
is often easier and frequently more accurate to calculate
variations, as opposed to the actual values themselves, only
the variations will be found.
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II. THE VARIATION OF THE LAUNCH
VELOCITY WITH THE COEFFICIENT OF
RESTITUTION

The collision viewed from a coordinate system moving
with the center of mass of the bat at the moment just before
impact is shown in Fig. 1. According to the standard as-
sumptions, the bat can be treated as a free body.’ The equa-
tions needed to describe the ball-bat collision come from
the conservation of linear momentum, the conservation of
angular momentum, and the definition of the coefficient of
restitution. These equations are

mvy = MV — mu, (N
Iy — myob = I + mub, 2)
e= W+ V—owb)/(vy,+ wb), (3)

where m is the mass of the ball, M is the mass of the bat, 7 is
the moment of inertia of the bat about the center of mass, v,
and v are the initial and final velocities of the ball, ¥ is the
final velocity of the center of mass of the bat, w, and w are
the initial and final angular velocities of the bat, b is the
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