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The two-dimensional hydrogen atom with a logarithmic potential energy

function

K. Eveker, D. Grow, B. Jost, C. E. Monfort lll,® K. W. Nelson, C. Stroh, and R. C. Witt
Department of Science and Mathematics, Parks College of Saint Louis University, Cahokia, Illinois 62206

(Received 24 July 1989; accepted for publication 4 May 1990)

Recently, a “shooting” method has been used to obtain exact expressions for eigenvalues and
eigensolutions of the two-dimensional hydrogen atom. This paper shows that the shooting
method is easy for undergraduate students to understand and implement numerically. The highly
accurate approximations for both eigenvalues and eigensolutions are then used to contrast the
two-dimensional and three-dimensional hydrogen atoms. Finally, previous methods for solving
the two-dimensional hydrogen atom are compared with the shooting method.

L. INTRODUCTION

Understanding the physical world is inextricably linked
with a clear understanding of the quantum mechanical
model that has proved so successful in describing atomic
processes. Recently, applications of this model to physical
systems in other spatial dimensions' have been made in the
hope of both illuminating the special characteristics of the
three-dimensional world and obtaining rare “exact” solu-
tions to the quantum theory. One such attempt has been
the study of the hydrogen atom in two-dimensional space.
This is the atom formed by the attraction of two electrically
charged particles, an electron of two-dimensional charge
— ¢ and a proton of two-dimensional charge ¢. It is com-
mon knowledge®* that the correct mutual electrostatic po-
tential energy function, the one satisfying Gauss’ theorem,
for such a system in two-dimensional space is a logarithmic
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function of the distance 7 separating the two particles. Neg-
lecting relativistic and magnetic effects, this means that the
time-independent Schrédinger equation in polar coordi-
nates for the relative motion of this system is

[ —# V¥ (2u) + ¢ In(+/r,) |¥(r¢) = E¥(r,d), (1)

where = m,m,/(m, + m,) is the reduced two-dimen-
sional mass of the proton—electron system, # is the two-
dimensional Planck constant divided by 277, and r, is a scale
constant. The goal is to find the energy eigenvalues E and
the corresponding (nontrivial) eigensolutions ¢ of Eq. (1)
which are bounded and square integrable in two-dimen-
sional space:

27T o
f f l¥(r@)|Prdrde < . (2)
0 0
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The chief difficulty in achieving this goal is the logarith-
mic potential energy term that causes a branch point singu-
larity at » = Oin Eq. (1). This renders ineffective the power
series techniques that lead to exact solutions for such cases
as the Coulomb potential ¢~ ' and the harmonic oscillator
potential cr’. Previous work on the system (1)—(2) has
been in one of two directions: Approximate the eigenvalues
using variational techniques>® or represent the solutions to
(1) in terms of infinite series of functions.”* Recently, one
of the authors® has developed the theoretical framework
for a new technique that simultaneously yields the eigen-
values and eigensolutions of the system (1)~(2). The pur-
pose of this paper is to show that this new unified method is
both easy to comprehend and computationally effective.
To this end, four undergraduate engineering students,
coauthors Eveker, Jost, Nelson, and Stroh, implemented
this method numerically on a Micro-VAX I computer; the
results obtained are highly accurate approximations of the
eigenvalues and corresponding eigensolutions.

It is the belief of the authors that the method will prove
general in nature and be applicable for solving the Schro-
dinger equation with a wide variety of potential energy
functions including the Coulomb and harmonic oscillator
potentials. Certainly students in a quantum mechanics
course would find the highly geometric nature of the meth-
od more natural and intuitive than the classical power se-
ries technique. Furthermore, certain aspects of the quan-
tum theory (e.g., the principal or total quantum number)
would arise naturally from geometric properties of the ei-
gensolutions (e.g., the number of their real zeros).

II. THE METHOD OF SOLUTION

The analysis of the system (1)-(2) begins with some
mathematical reductions. The radial symmetry of the po-
tential energy function permits separation of the variables
in Eq. (1). This, together with the requirement that

U(r,d + 2m) = (), yields

P(r.$) = R(rexplilp) /2, (3)
where / is any integer; the radial part R = R(r) satisfies
K,(R) = ER, ; 4)
where
dZ 1 d 2.2 (2# ) 2 ( r )
K=—4r'"—=-1r7"—|Z)gh|—].
T ar + dr # 1 7o

The square integrability condition reduces to
J IR(r)|Prdr< . (5)
0

The transformation from the independent variable r in Eq.
(4) to the variable u defined by

(2)-(5)+)

simplifies the radial eigenvalue Eq. (4). The results are the
equivalent equation

w15 ]

—||=|+ouexp(u) |R=0, 7N
dv’ 4 P

where o = uq’rl exp(2E /q*)/(4%) and the equivalent

square integrability condition

J-m IR(u)|* exp(u)du < . (8)
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Thus solving the eigenvalue problem (1)-(2) reduces to
solving the eigenvalue problem (7)-(8). The calculations
of this work are based on the results in Ref. 9 concerning
the solution of the latter problem; consequently, the basic
underlying ideas will be outlined at this point.

Fix a positive integer / and let ¢ be any positive real
number.'® Let R = S, (u) denote the solution to Eq. (7),
which satisfies the initial conditions R(0) =1,
R'(0) =1/2. 1t is easy to show that .S, (#) is bounded be-
low by exp(/u/2) on the positive u axis so the definite inte-
gral

c(o) =J‘w [S,(w)] ?dw (9
0

is finite. If R = T, (u) is the solution to Eq. (7), which
satisfies the conditions

R(0)=1, R'(0)=(1/2) —[c(®)] ", (10)

then it is not hard to prove that as u approaches infinity,
T, (u) approaches zero so rapidly that “half” of condition
(8) is satisfied:

J-m IT, (u)|” exp(u)du < .
(1]

From this it is clear that if 7, () is bounded as u ap-
proaches negative infinity, then this o value will be an
eigenvalue of (7)-(8) and R = T, (u) will be an eigensolu-
tion. A careful analysis shows that as the parameter o in-
creases, the number of real zeros of T, either increases or
remains the same. The eigenvalues and eigensolutions oc-
cur at those o values where the number of real zeros of 7,
jumps abruptly by one. The reason for this is that as o
increases, the additional real zero of T, first appears at
negative infinity. At such a o value, T, (#) is then bounded
as u approaches negative infinity.

For example, when o is sufficiently close to zero, T, (u)
is always positive and diverges to infinity as » approaches
negative infinity. Moreover, if o is increased just beyond a
certain critical value, call it o, then 7, (u) always pos-
sesses a real zero and diverges to negative infinity as u ap-
proaches negative infinity (see Fig. 1). This critical value is
equal to the supremum or least upper bound of the o values

)
[}
:
1]
R Of =TT e rnmccmon e r--s -—--
,
:
_l- : -
1]
;
_2- :
'
1]
,
2% -0 -5 ) 5

Fig. 1. T, curves for o values near the critical value o, when I=1. A:
R=T, (u),wherea<o;B:R=T, (u); C:R=T,(u), where o> 0,.
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for which 7', has no real zeros; in symbols,
o, =0, (l) =sup{o>0:T, has no real zeros}.

It can be shown that T o (4) approaches zero as u ap-
proaches negative infinity so ¢, is an eigenvalue of (7)—(8)
and T, is an eigensolution. In general, if / remains fixed
and o, is defined by

g, =0, (l)
=sup{o>0:7, has exactly n — 1 real zeros}, (11)

then it can be shown that T, (#) approaches zero as u

approaches negative infinity. In this way, infinite se-
quences of eigenvalues o, (/) <0,(I) <o5(I) < - and cor-
responding eigensolutions 7, , T,, , T, , ... of (7)—(8) are
constructed. This procedure, using Eq. (11) to generate
eigenvalue—eigensolution pairs for the system (7)—(8),
will be referred to as the shooting method in analogy with a
techn|i?ue for solving two-point boundary value prob-
lems.

We conclude - this section by formally stating several
properties of the function 7", which will be needed when
the numerical computations of eigenvalues and eigensolu-
tions are described in Sec. III.

(1) Foreach o> 0, T, has no zeros in the positive » axis.

(2) If the equation (/*/4) + ou exp(u) =0 has a real
solution, let ¥, denote the smallest such solution; other-
wise, set #, = + oo. Then T, has at most one zero in the
interval — o <u<u,.

(3) Ifuyisazeroof T, then T, (u) changes its algebraic
sign at u = u,. ‘

(4) If o is not an eigenvalue of (7)-(8), then |7, (u)]
tends to infinity as a constant multiple of exp( — /u/2) asu
approaches negative infinity.

(5) The number of real zeros of 7, is a nondecreasing
function of o.

(6) For each positive integer », T, has exactly n — 1
real zeros.

(7) T, has at least n real zeros whenever o> o, .

The proofs of these and other statements in this section,
as well as further properties of the eigenvalues o, (/) and
the eigensolutions T, , can be found in Ref. 9.

ITII. NUMERICAL IMPLEMENTATION OF THE
METHOD

The eigenvalues o = o, (/) of (7)-(8) are given by Eq.
(11). In order to turn this theoretical formulation into a
computationally effective procedure, one must be able to
determine accurately and efficiently the number of real ze-
ros of T, for each o> 0. The approach taken in this work
was to use a highly accurate numerical method'? to solve
the initial value problem (7)-(10), for which R = T, (u)
is the solution. It was assumed that the numberof real zeros
of T, was equal to the number of sign changes in the nu-
merical solution. Neglecting errors due to imprecise ma-
chine arithmetic, this assumption is valid provided the
stepsize is sufficiently small and o is not an eigenvalue [see
properties (3) and (4) of Sec. II].

By properties (1) and (2) of Sec. II, all the real zeros of
T, are in the negative u axis and all, save possibly one, are
in a predetermined finite interval. Furthermore, when ¢ is
notaneigenvalueand/ #0, |7, (u) | diverges exponentially
as u approaches negative infinity [see property (4) of Sec.
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I1], making it easy to tell when to quit searching for more
real zeros of T,. These additional facts allow the numerical
solution of (7)~(10) to be carried out on a finite interval of
the negative u axis. In this work, for example, the interval
— 50<u<0 was more than sufficient to determine the
eigenvalues o, () to eight significant digits for the param-
eter ranges 0</<4 and 1<n<5.

One straightforward approach to solving the initial val-
ue problem numerically (7)—(10) consists of the following
three steps:

(1) Solve Eq. (7) numerically on a sufficiently large fi-
nite interval of the positive u axis subject to the initial con-
ditions R(0) = 1, R '(0) =/ /2 to obtain approximate val-
ues for R = .5, (u).

(ii) Approximate the value of ¢(o) given by Eq. (9)
using a numerical quadrature method together with the
approximate values of S, (#) from step (i).

(iii) Use the approximate value for c¢(o) from step (ii)
and solve Eq. (7) numerically on a sufficiently large finite
interval of the negative u axis subject to the initial condi-
tions R(0) =1, R'(0) = ({/2) — [c(o)] ™" to get ap-
proximate values for R = T (u).

The chief difficulty with this procedure proved to be that
the numerical quadrature in step (ii) produced relatively
inaccurate approximations for c¢(¢). This effectively
doomed the entire approach since the numerical solution in
step (iii) was quite sensitive to even small changes in ¢( o).
To give some feeling for the accuracy requirements, it be-
came apparent in subsequent computations that between
12 and 14 significant digit accuracy in ¢(o) was needed to
achieve 8 significant digit accuracy in the eigenvalues
o, (D).

Consequently, a different procedure was devised in
which steps (i) and (ii) were replaced by a more accurate
method for determining c(o). This new procedure was
based on finding the solution R = R, (#) to Eq. (7) on the
positive  axis subject to the initial conditions

R(O)=1, R(0)=(/2)—-c"", (12)

where cis a positive parameter. It is easily seen that cR, (u)

=[c—c(a)]S,(u) + c(o)T,(u) and since S, (#) in-
creases to infinity and T, (u) decreases to O as u ap-
proaches infinity, it follows that ¢, < ¢(0) < ¢, if and only if
R, (u)and R, (u) approach negative and positive infinity,
respectively, as u approaches infinity. This led to the fol-
lowing method for numerically solving the initial value
problem (7)-(10).

(i") Find a bracket [cL,cg ] for c(o) by twice numerical-
ly solving the initial value problem (7)-(12) on a suffi-
ciently large interval of the positive u axis to obtain solu-
tions RL.,‘( u) and RL.R (u) which diverge to negative and
positive infinity, respectively, as u approaches infinity. Due

“tothe rapid growth in S, (#) with increasing u, the interval

0<u<10 proved sufficiently large in all cases.

(ii') Let ¢y, = (¢, + cg)/2 denote the midpoint of the
previous bracket for ¢, and numerically solve Eq. (7) on a
sufficiently large interval of the positive u axis subject to
the initial conditions (12) with ¢ = ¢,,. If R, (u) diverges
to negative infinity with increasing u, set ¢, = c,,; other-
wise, if R, (u) diverges to infinity set cx = c,,. The result
is a new bracket [c, ,cg | for ¢(o) which is half the length
of the previous bracket.

(iii') Repeat the bisection procedure of step (ii’) until a

Eveker et al. 1185



Table I. Tight upper bounds for the eigenvalues o of the system (7)~(8) for the parameter ranges 0</<4 and 1<n<5.

=0 I=1 =2 /=3 I=4
n=1 0.358 286 07 1.999 5675 4.999 3233 9.358 1924 15.076 210
n= 3.466 2085 6.955 3283 11.849 450 18.115 901 25.747 087
n=3 9.727 1731 15.017 795 21.772 834 29.924 231 39.452 551
n= 19.133 753 26.203 520 34.795 887 44.812 685 56.222 450
n=>5 31.684 119 40.519 049 50.931 655 62.797 960 76.075 308

sufficiently accurate approximation for c¢(¢) is obtained.
In the present work, 16 significant digit accuracy in ¢(o)
was sufficient.

(iv") Use the approximate value for ¢(¢) from step (iii")
and solve Eq. (7) numerically on a sufficiently large finite
interval of the negative u axis subject to the initial condi-
tions R(0) =1, R"(0) = (//2) — [¢(o)]~". (As pre-
viously mentioned, the interval — 50<u <0 sufficed.)

The method outlined in steps (i') through (iv’) proved
to be reliable in determining the number of real zeros of T,
for each o > 0. This permitted the numerical determination
of the eigenvalues of (7)-(8) using the following tech-
nique. Fix ¢, >0 and suppose that T,, has m real zeros.
Properties (5) and (6) of Sec. Il imply that 7, <o, , ,. If
the value of o is increased beyond o, then eventually a
value g is reached for which 7, hasm + 1 real zeros; but
then o, , ; <oy by properties (5) and (6). In this way a
bracket [o,,0,] is obtained for o, ,. This (m + 1)th
eigenvalue can be approximated, at least in principle, to
any desired accuracy by repeatedly bisecting the bracket. If
o denotes the midpoint of [0, ,0, ], thenseto, =cif T,
has m real zeros; otherwise, set o, = oif T, has m + 1 real
zeros. In this manner a new bracket for o, |, is obtained
that is half the length of the previous bracket. Note that this
iterated bisection procedure for computing the (m + 1)th
eigenvalue simultaneously yields successively better ap-
proximations of the eigensolution T, _ since numerical
values for the convergents, 7, and T, , are generated in
the course of determining the number of their real zeros.

The shooting method was implemented on a Micro
VAX II computer using FORTRAN 77 programs and double
precision arithmetic; copies of the source programs are
available from the authors upon request. The decision to

implement the method by shooting Eq. (7) rather than (4)
stemmed from a desire to maximize numerical efficiency.
The first derivative of the dependent variable is absent in
(7); consequently, it could be efficiently solved using an
extension of Runge-Kutta methods to second-order differ-
ential equations first introduced by Nystrém. ' The classi-
cal fifth-order Nystrom method'* was used to obtain pre-
liminary values for o, (/). Refined values of c(a), T, (1),
and o, (/) were then determined using a highly accurate
tenth-order Nystrém method developed by Hairer.'”> An
approximate one-third reduction in CPU time resulted
from using this method to solve Eq. (7) as opposed to em-
ploying a Runge-Kutta method of equivalent accuracy to
solve (4).'” This significant improvement in numerical ef-
ficiency had a pedagogical cost, however. The logarithmic
transformation (6) increased the complexity of the math-
ematical analysis and replaced the physically meaningful
variable r with the artificial variable u. Admittedly, the
undergraduate students would more easily have under-
stood shooting the original equation (4). In retrospect, the
substitution X(#) = r'”>R(r) in (4) might have been clos-
er to optimal because it results in the numerically efficient
equation

X" +{Qu/#)[E— ¢ In(r/1y)]
+U-DU+Dr X =0,
which still retains many pedagogically attractive features.

IV. THE EIGENVALUES AND EIGENSOLUTIONS

The theoretical results and their numerical implementa-
tion yielded the estimates given in Table I for the eigenval-
ues o of the system (7)—(8) when the parameters / and n
were in the ranges 0</<4 and 1<n<5. The entry corre-

Table I1. o eigenvalues for the system (7)-(8) converted from y eigenvalues of (13) using the relation 8¢ = exp(2y). These were determined by

Asturias and Aragén® and Reiser.’

=0 =1 1=2 I=3 =4
Ref. 6 Ref. 5 Ref. 6 Ref. 5 Ref. 6 Ref. 5 Ref. 6 Ref. 5 Ref. 6
n=1 0.358 38 0.53501 1.999 66 1.9995 4.9996 4.9993 9.358 25 9.358 63 15.0769
+2X107°  £3X1073  +£8X107° 4£1x107* +4x10"* 4£2%x10-* +2x10-* +8%10~* +1x10"°
n=2 3.446 82 3.959 82 6.955 82 6.95874 11.8634 11.8532 18.1161 18.1197
+1X107*  +£4X1077  £3X10°* +1x107% +7x107* +£1X107* +4x107* +1x10-2
n=3 9.728 29 10.5804 15.0187 15.0684 21.7797 21.8172
+2X107*% +6X107* 43x10°* +6X1073 +1x107%2 4+2x10°2
n=4 19.1369 20.5220 26.2052 26.5279
+4X107% X8X10~* 4+5%X10°* +2x10°°
n=>5 32.219 34.10
+7X107% 4+ 1x10-!
1186 Am. J. Phys., Vol. 58, No. 12, December 1990 Eveker et al. 1186



sponding to a given pair of integers / and 7 in Table I is a
tight upper bound for ¢ in the sense that if 1 is subtracted
from the last digit of the entry then a lower bound for o
results.

Asturias and Aragoén® based their eigenvalue computa-
tions on the differential equation

1 [d( d 2 ]
—|=(z=}|———1In(z R(z) =0, 13

{z[dz( dz)] z? (@) + 7R () (3
which is equivalent to Eq. (4) [and hence to Eq. (7)] via
the substitution z=p8'?r where B=2uq’/# and
y = E /¢°. The estimates for the eigenvalues y obtained by
Reiser” and by Asturias and Aragén® were reported in Ta-
ble I of Ref. 6. These were converted to ¢ values using the
relationship 8¢ = exp(2y) and are displayed in Table II of
this work. The obvious discrepancies between the approxi-
mations for the case / = 0 in Table II are discussed in Astu-
rias and Aragdn® and a convincing argument is given for
the greater accuracy of those of Ref. 6. It is apparent that
the approximations for the eigenvalues displayed in Table I
are in general agreement with those in Table IT; when /=0
the approximations of Table I are in close agreement with
those of Ref. 6 in Table I1. Observe that almost without fail
the eigenvalue approximations in Table I are less than the
corresponding entries in Table I1. This is consistent with
the claim of greater accuracy for the approximations in
Table I because the variational techniques used in Refs. 5
and 6 produce upper bounds for the eigenvalues. > Figure 3
displays in graphical form the values obtained by the au-
thors for the first three eigensolutions to (7)-(8) when
{=1

When / = 0in the eigenvalue problem (7)-(8), theoreti-
cal difficulties arise because the differential operator
d?/du® — ou exp(u) is not self-adjoint on its natural do-
main, the space of all twice differentiable functions f (u)
satisfying the square integrability condition (8) and for
which R(u) = [d?/du® — ou exp(u)1f (u) also satisfies
(8). A startling consequence of this nonself-adjointness is
that when / = O there exist square integrable solutions of
the form (3) to Eq. (1) for every real number E,° a situa-
tion that is untenable on physical grounds. Although a rig-
orous mathematical resolution of the self-adjointness of
d?*/du* — ou exp(u) is still lacking, it appears likely to the

24
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Fig. 2. T, curves for o values near the critical value o, when /= 0. A:
R=T, (u),wherec<o;B:R= T,(u);C:R=T,(u), where o> o,.
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Fig. 3. The first three eigensolutions to the system (7)—(8) when /=1,
normalizedso R(0) = LA:R =T, (u);B:R=T, (u);C:R = T, (u).

authors that the problem can be resolved by insisting that
the solutions to (7) be bounded as well as satisfy inequality
(8). It was assumed in this paper that when / = 0 the eigen-
values o, (n = 1,2,3,...) of the system (7)-(8) could be
obtained from Eq. (11) and that the corresponding eigen-
solutions T, (#) approached a nonzero constant value as u

approached negative infinity (see Fig. 2). In light of the
uncertain theoretical foundation for the shooting method
computations of this paper when / = 0, it was reassuring to
the authors to obtain close agreement with the / = 0 eigen-
values computed in Ref. 6 using an altogether different
method (see column 1 in Tables I and II).

The primary physical interest, however, is not in solu-
tions to the transformed system (7)-(8), but rather in
those for the radial system (4)—(5). As discussed in Sec. 11,
solutions for the two systems are in one-to-one correspon-
dence. Specifically, suppose E and o are related by the
equation o = ug’r; exp(2E /q*)/(4#*) and define the
function u,(r) =2In(r/r,) — In[4#/( ng’r)]. Then
R =T,[u,(r)] is a solution to (4)-(5) whenever R

o,

Fig. 4. The first three eigensolutions to the system (4)—(5) when /= 1,
normalized so [7|R(P|rdr=1. A: R=¢T, [#,(N]; B:
R=eT, [u,(N];CR=cT, [4,(n]
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=T,(u) is a solution to (7)-(8). Figure 4 presents
graphs obtained in this manner for the first three eigensolu-
tions to (4)~(5) in thecase / = 1.

In connection with electron interferences in the electric
field generated by a cylindrical capacitor in three-dimen-
sional space, Gesztesy and Pittner” have studied an equa-
tion that is nearly identical with (7):

2
(—d—-—lz>y(x) = Ax exp(2x)y(x). (14)
dx?
Reference 7 shows that the solution to (14), which behaves
appropriately at negative infinity, y(x)exp( — Ix) -1 as
X— — oo, can be expressed as an infinite series of exponen-
tial polynomials:

yi(dx) =exp(lx) ¥ [Aexp(2x)]'p,,(x). (15)
n=20
Here, p,,; (x) is a polynomial of degree » defined recursive-
ly by putting p,,(x) = 1 and

d d?
dnn+ D +202n+ 1) — —) a1 (x
( ( )dx+dx2p'1()
=xp,_,(x), for n=123,...
The eigensolutions of the system (7)—(8) can be related
to the solutions of (14) which are given by Eq. (15). To
accomplish this, fix a nonnegative integer / and define

Y(4,x) = [y, (A,00] 'y, (4x). (16)

If 5, = 0, () is the nth eigenvalue of (7)-(8), then it is
easy to show that the nth eigensolution is given by

Ta”(u) = Y(8U,,,u/2)- (17)

The procedurebased on using Eqs. (15)—(17) to obtain the
eigensolutions to the system (7)—(8) will be referred to as
the infinite series method.

Table I1I compares numerical values for T, (u) yielded
by the shooting and infinite series methods when / = 1. In
the latter method, 1.999 5674 was used as the value of o,. A
step size of 0.01 was employed in the tenth-order numerical
differential equation solver portion of the shooting method
to calculate the approximations for 7, () displayed in
column 2. The values for ¥(80,,u/2) in column 3 were
computed by truncating the infinite series (15) so the index
of summation extended from n = 0 to n = 15. It is appar-

ent that values derived using the two methods agree quite
closely. For example, their relative difference 2| T, (u)
= Y(@Bo,,u/)|/[|T,, (w)| + |Y(80,u/2)]|], is less than
one-half percent over the interval — 16<u<2. This corre-
sponds to an error of less than five parts of 1000 over the
range of physical distances 0.001 342<r/7,<10.87 if, fol-
lowing Ref. 6, the scale constant is chosen to be 7,
=%/(qJ2u).

When u is negative, the values for the eigensolutions in
column 3 of Table III are almost certainly more reliable
than those in column 2. There are two reasons for this.
First, the infinite series in (15) is uniformly convergent on
the negative x axis.” Second, the calculated values of
Y(8¢,,u/2) did not change appreciably when the index of
the partial sum approximating (15) ranged from n = 0 to
n = 25. The shooting method approximation in column 2,
on the other hand, is unstable and will eventually diverge if
carried out far enough on the negative u axis [see property
(4) on Sec. IT]. For positive values of u, however, the situa-
tion is reversed; the shooting method values in column 2
are more reliable than those in column 3 resulting from the
infinite series method. This is due to the slow convergence
of the infinite series (15) on the positive x axis. For in-
stance, whenA = 80, (1) =16, x = 1,and n = 15 the expo-
nential factor multiplying p, , (x) in (15) is approximately
10

The accuracy of the shooting method approximations
depends ultimately on the accuracy of the numerical differ-
ential equation solver. It seemed appropriate, therefore, to
test the accuracy of the tenth-order Nystrém'2 method em-
ployed in this work by numerically solving several initial
value problems whose analytical solutions were known. In
each case a step size of 0.01 was used. The first test case was
the relatively nonstiff differential equation (1 + #?)°R”
— 8u®R = 6u with the constraints R(0) =0 and R '(0)
= — 1. The analytical solution R = — u(1 + »?) ~' be-
haves somewhat like the first eigensolution T, (u) near the
origin on the negative u axis. The first ten significant digits
of the numerical solution agreed with the analytical solu-
tion throughout — 50<u<50. The second case was the
mildly stiff differential equation R “ — R = O subject to the
initial conditions R(0) = R '(0) = 1. The analytical solu-
tion R = exp(u) behaves asymptotically on the negative u
axis like the eigensolutions to (7)—(8) when /= 2. Over

Table I11. Comparison of numerical values obtained for the first eigensolution to the system (7)—(8) when / = 1 using two techniques: the shooting

method (column 2) and the infinite series method (column 3).

Relative
u R=T, (w) R =Y(80,,u/2) difference (%)
2.0 2.315 400 256 2218 10~ 2.293 5459264241073 0.363 201 743
0.0 1.000 000 000 000 1.000 000 000 000 0.000 000 000
—20 2.248 328 960 316 2.248 329 064 162 0.000 004 619
— 40 1.249 601 222 744 1.249 601 314 153 0.000 007 315
—6.0 4.998 537 335 558 10~! 4,998 538 145 130x 10! 0.000 016 196
— 8.0 1.867 497 400 279X 10~} 1.867 498 852 677x 10! 0.000 077 772
- 10.0 6.888 446 967 144X 102 6.888 483 322302102 0.000 527 769
- 12.0 2.535 146 855 572 10?2 2.535244 377708 X102 0.003 846 730
— 140 9.324 650 668 778 x 10~ 9.327 296 148 333103 0.028 366 793
- 16.0 3.424 169 082 496 X 103 3.431 357954 600103 0.209 724 857
—18.0 1.242 787 737 622 10?3 1.262 328 157433 x 1073 1.560 041 193
—20.0 4.112 687292092 10~ * 4.643 846 944 421X 10 * 12.131732 530
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the interval — 10<u#<0, the global error of the numerical
solution was just 8.8 10~ '*. However, the numerical so-
lution subsequently deteriorated and by u = — 19, only
the first significant digit was correct. The third case in-
volved the extremely stiff differential equation R”
+ (1 — 4*)R = 0. The analytical solution that satisfies
the initial conditions R(0) =1, R'(0)=0 is R
= exp( — u?/2), afunction whose asymptotic behavior on
the positive u axis resembles that of an eigensolution to
(7)—(8). The global error of the numerical solution was
only 1.7X 10~ '* over the interval 0O<u<4. However, just
two significant digits of the numerical solution were cor-
rect at ¥ = 6, and by u = 10 it had begun to diverge to
infinity. It is the considered opinion of the authors that the
accuracy of the numerical approximations for the eigenso-
lutions to (7)—(8) is roughly similar to case 1 near the
origin and analogous to cases 2 and 3 asymptotically on the
negative and positive u axes, respectively.

V. ANALYSIS AND CONCLUSIONS

The accurate determinations of eigenvalues and eigenso-
lutions presented in Sec. IV confirm and extend the under-
standing of the two-dimensional hydrogen atom. In partic-
ular, the ordering of electron energy levels in the
two-dimensional hydrogen atom, reported previously in
Refs. 5 and 6, was verified:

0,(0)<o,(1)<o,(0)<0,(2) <o, (1) <0, (3)
<03(0) <0, (2) <o3(1)
<0,(4) <0,(3) <o, (0) <+,
or equivalently:
Is<lp<2s<ld<2p<1f<3s<2d<3p<lg<2f<ds<..,

where 1,2,3,4,... denote the values of the radial quantum
number # and 5,p,d.f.g,... denote the values / = 0,1,2,3,4,...,
respectively, for the angular quantum number.

The highly accurate eigenvalue approximations also en-
courage speculation concerning the functional dependence
of the eigenvalue o on the radial and angular quantum
numbers, » and /. Table IV illustrates a simple empirical
relationship

o, (N=fn)=CBn+D(n+1-1)/2, (18)

which gives general agreement with the eigenvalues in Ta-
ble I. Realize, however, that the values in Table IV are
crude approximations.

The functional relationship in (18) has some theoretical
justification. In Ref. 9 it is proven that if / is nonzero, there
exist numbers &k, = k,(/) and k, = k, (/) such that

k, [n/In(n) <o, (1) <k, n? (19)

Table I'V. Approximate eigenvalues obtained from the empirical formula
(18).

I=0 I=1 1=2 [=3 I=4
n=1 0 2 5 9 14
n=2 3 7 12 18 25
n=3 9 15 22 30 39
n=4 18 26 35 45 56
n=3 30 40 51 63 76
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whenever 7 is sufficiently large. Thus, if /is a fixed positive
integer, f (n,/) has the same general asymptotic behavior as
o, (1) when n tends to infinity.

Asymptotic expressions for the energy eigenvalues of the
two-dimensional hydrogen atom also follow from (19).
Recall from Sec. II that ¢ is related to the energy E in the
Schrodinger equation (1) by o= ug’n} exp(2E/q*)/
(4#%). Solving for E in terms of ¢ yields the expression

E(n]) = (¢/2)In[4#0, (D/(ug’r3) | (20)

for the energy eigenvalue corresponding to the radial and
angular quantum numbers, # and /. Appealing to (19)
gives numbers ¢, = ¢,(/) and ¢, = ¢, (/) such that

¢, In[r/In(n)1<E(n,0)<c, In(n)

whenever # is sufficiently large and / is nonzero. In particu-
lar, it is not difficult to show that E(n,/) is asymptotic to
¢* In(n) when n tends to infinity and / is a fixed positive
integer.

This asymptotic behavior of E(#,/) points out one fun-
damental difference between the two-dimensional and
three-dimensional hydrogen atoms: The electron energy
levels for the two-dimensional hydrogen atom are un-
bounded® while those for the three-dimensional hydrogen
atom are of bounded energy. Specifically, the energy eigen-
values of the three-dimensional hydrogen atom are given
by

&(N)= —uq*/2#N?), (21)

where N = 1,2,3,... denotes the total quanturh number.'®
That is, N=n, + [ + 1 where n, =0,1,2,... is the radial
quantum number and /= 0,1,2,... is the orbital-angular-
momentum quantum number. Consequently, the only pos-
sible electron energy levels in the three-dimensional hydro-
gen atom lies between — ug*/(2#7) and zero. Implications
of the unboundedness of electron energy levels in the two-
dimensional hydrogen atom have been addressed in Ref. 5
for such physical processes as ionization and electrical con-
duction in two-dimensional matter.

Equations (20) and (21) and Table I reveal another ba-
sic difference between the two-dimensional and three-di-
mensional hydrogen atoms: the degeneracy of the electron
energy levels. The dependence of & (N) on the sum of n,
and /in Eq. (21) makes clear the degeneracy of the energy
eigenvalues in the three-dimensional hydrogen atom, at
least when n, and / are nonzero; to each such energy eigen-
value there corresponds N * linearly independent eigensolu-
tions.'” On the other hand, Table I and Eq. (20) make clear
that the energy eigenvalues E(n,/) in the two-dimensional
hydrogen atom are distinct, at least when the radial and
angular quantum numbers are in the ranges 1<n<5 and
0</<4. It has been shown that this distinctness extends to
all energy eigenvalues E(n,/) where n>1 and />0.* The
invariance of Eq. (4) under a change in the sign of / shows
that E(n,/) = E(n, — I). Consequently, when /is nonzero,
Eq. (3) implies that there are two linearly independent
eigensolutions to the Schrédinger equation (1) corre-
sponding to each energy eigenvalue E(n,/). When the an-
gular quantum number is nonzero, the doubly degenerate
nature of the electron energy levels in the two-dimensional
hydrogen atom has been discussed in terms of the Bohr
model.’

The accurate eigensolution determinations presented in
Sec. IV clarify details in the understanding of the two-di-
mensional hydrogen atom. This work gives tangible illus-
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trations of previous theoretical results concerning proper-
ties of the radial part”® and makes it clear that the radial
parts of the wave functions for the two-dimensional and
three-dimensional hydrogen atoms are very similar. To be
precise, recall that

R(p)=e""p'LY 7 ] (p) (22)

is the radial part of the eigensolution ¥ corresponding to
the total and orbital-angular-momentum quantum
numbers, N and /, in the Schrédinger equation for the
three-dimensional hydrogen atom.'® In Eq. (22), p is a
nondimensionalized distance from the center of mass and
L% 1] (p) denotes the associated Laguerre polynomial of
degree n, = N — [ — 1. It follows from (22) that R(p)
possesses the three properties listed below:

(1) R(p) has n, real zeros in the interval 0 <p < + .

(2) R (p)/p’ approaches a nonzero constant value as p
approaches zero.

(3) R(p) decays exponentially to zero as p tends to in-
finity.

References 7 and 9 show that the radial part of the wave

function ¢ of the two-dimensional hydrogen atom has
these same properties provided n, =n—1, where
n = 1,2,3,... is the radial quantum number used in this in-
vestigation, and with the understanding that R(p)/p''' re-
places the expression in property (2), since /=0, + 1,
+ 2,... in the two-dimensional hydrogen atom. Figure 4
illustrates properties (1), (2), and (3) in an explicit man-
ner for the radial part of the wave function for the two-
dimensional hydrogen atom.

In contrast with variational methods>® which are better
suited for approximating eigenvalues than eigensolutions'®
and infinite series techniques’* which yield solutions to the
radial differential equation without identifying eigenval-
ues, the shooting method unifies the eigenvalue—eigensolu-
tion computations for the two-dimensional hydrogen
atom. For this reason, the method possesses a distinct theo-
retical attractiveness. A major goal of this paper has been to
demonstrate that, in addition to its theoretical appeal, the
shooting method is effective as well from a computational
standpoint. The eight significant digit eigenvalue approxi-
mations of Table I and the eigensolution values displayed
in Table I1II, accurate to the millionths place over the range

— 10<u<0, effectively support this objective.

The sheer accuracy of the results, however, does not ful-
ly demonstrate the intrinsic advantages of the shooting
method. First, a major advantage is that it produces both
upper and lower bounds for each eigenvalue since a bracket
o, <0, <0y is maintained at each stage of the iterative ap-
proximation of the nth eigenvalue. This contrasts favor-
ably with variational techniques that give only an upper
bound for each eigenvalue.'”

Second, the shooting method is a one-parameter meth-
od. For each fixed value of /, one varies the single param-
eter o to pinpoint eigenvalues and eigensolutions of the
system (7)-(8). Variational techniques, on the other
hand, approximate the first n eigenvalues for the radial
differential operator K, in (4) using the eigenvalues of an
associated n X » Hermitian matrix that is “close” to K, at
least when n is large. Thus a variational technique is a
multiparameter method with the elements of the » X n ma-
trix serving as parameters.

Regardless of whether or not the shooting method is
computationally more efficient in determining eigenvalues
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than a variation technique, the fact that it is a one-param-
eter method contributes to a second goal of this paper: to
show that the shooting method is easy to comprehend. In-
deed, one can actually view the convergence process as the
eigenvalue-eigensolution computations advance. Varying
the parameter o changes the slope with which the eigenso-
lution candidate R = T,(u) passes through the point
(0,1) in the # — R plane [see Eqgs. (9) and (10)] and in-
fluences the general concavity of R =T, (u) [see Eq.
(7)]. An eigenvalue—eigensolution pair results when the
parameter o is fine tuned so as to make 7, asymptotic to
the negative u axis (see Fig. 1).>' By contrast, for a vari-
ational method it is harder to grasp and hold in focus the
more abstract, diffuse role of the coefficients of the n X #n
matrix in approximating the eigenvalues of K, especially
when r is large.

Thus fewer parameters make the shooting method easier
to visualize and comprehend than a variational technique.
This, however, is not the sole reason why it is more intelligi-
ble. A careful examination of the theory upon which any
variational technique is based leads to sophisticated math-
ematical concepts: infinite-dimensional Hilbert space, lin-
ear operators on Hilbert space, the representation of an
operator with respect to an orthonormal basis for the
space, and finite-dimensional projections of Hilbert space
operators. The shooting method, in contrast, is based on
elementary mathematical concepts. To grasp its theoretical
foundations, one need not look beyond the radial differen-
tial equation; solution “‘waves” are sought that are bound-
ed near the origin and approach zero as r tends toward
infinity. Consequently, the conceptual simplicity of the
shooting method enhances its understandability in com-
parison with a variational technique.

As previously discussed, a major advantage of the shoot-
ing method over the infinite series method is that the for-
mer unifies the eigenvalue-eigensolution computations. In
the three-dimensional hydrogen atom, infinite series repre-
sentations for solutions to the radial differential equation
lead quickly to polynomial solutions and thus to eigenval-
ues, at least when the exponential decay at infinity has been
suitably factored out [see Eq. (22) ]. The analysis is not as
simple in the case of the two-dimensional hydrogen atom
and infinite series representations for the solutions have not
yielded eigenvalues.

However, assuming the eigenvalues are somehow
known, the infinite series method has certain distinct ad-
vantages over the shooting method in determining eigenso-
lutions. First Egs. (15)—(17) are more easily implemented
on a computer and require substantiaily less CPU time to
execute than the shooting method. Second, Eq. (15) shows
very clearly the dependence of the eigensolution of the pa-
rameters / and A, a definite aid in comprehending the infi-
nite series method. Despite these advantages, however, re-
call from Sec. IV that the series in Eq. (15) converges very
slowly on the positive x axis. Therefore, the infinite series
method is not as computationally superior to the shooting
method as it first appears. Incidentally, the slow conver-
gence on the positive x axis dims any hope of implementing
the shooting method using the function y, (4,x) in Eq. (15)
instead of T, (1) as the eigensolution candidate.

Perhaps the most important advantage of the shooting
method in comparison with the infinite series method is its
promise in treating quantum mechanical systems with a
spherically symmetric potential ¥(r). In such situations
the problem reduces to solving the radial equation
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d’R (n— 1)d_R
dar dr

2m k() .
+(?[E—V(’”+7)R—° (23)

r

subject to the condition*
J |R(r)|2r”*'dr< 0. (24)
0

Here, n is the spatial dimensionality of the physical system
and k(/) denotes the /th eigenvalue of the Laplace—Bel-
trami operator corresponding to the sphere in n-dimen-
sional space.

If p(r) =r"~ "' and q(r) = " {Cm/#)[E - V(r)]
+ k(1)/r*}, Eq. (23) can be placed in the form

d dR

— — =0. 2

2 (51 2R+ gnr =0 (25)
A general result® concerning equations of the form (25)
guarantees the existence of a “‘small” solution R,(r), one
which has the property

R,(r)/R,(r) -0 as r— + (26)

for any solution R () of (25) that is linearly independent
of R,(r). A solution R,(r) that enjoys property (26) is
called a principal solution of (25) at infinity and any solu-
tion R, (r) that is linearly independent of R, (r) is called a
nonprincipal solution of (25) at infinity.

A principal solution of (23) at infinity is fundamental in
solving the radial problem (23)-(24), for its asymptotic
behavior gives the best chance of satisfying (24) among the
solutions of (23). Reference 23 gives explicit representa-
tions for principal and nonprincipal solutions; in particu-
lar, a principal solution can always be constructed from
any nonprincipal one via the formula

* [R,(s)] ’ds

p(s)

The eigensolution candidate 7, (#) for the system (7)—(8)
was produced in this manner.’ The initial conditions in
(10), which were used to define 7', in Sec. I1, were derived
from a representation of the form (27). Conditions in (10)
were used in this investigation to characterize T, rather
than (27) because a numerical differential equation solver
proved to be computationally more effective in approxi-
mating T, (u).

Equipped with a principal solution R (#) of (23) at in-
finity as the eigensolution candidate, the shooting method
can be employed to solve the radial system (23)—(24). This
consists of holding / fixed and adjusting the parameter E in
Eq. (23) until R (#) is bounded near zero. For any such
value of E, the corresponding R . (») should satisfy the con-
dition in (24) thus making E and R, (r) an eigenvalue—
eigensolution pair of the radial system. In this work, before
applying the shooting method to the two-dimensional hy-
drogen atom, the radial system (4)—(5) on the interval
0 <r< oo was transformed into (7)—(8) on the interval

— o < < oo for reasons discussed earlier. Otherwise, the
shooting method was applied exactly as described above.
In particular, the parameter o was adjusted so that T, (u),
a principal solution to (7) at positive infinity, was bounded
near negative infinity. This resulted in a sequence of eigen-
value—eigensolution pairs o and T, (1) to (7)—(8).

We conclude with a list of problems and questions that

R()(r)le(r)f 27)
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arose in the course of this work and warrant further investi-
gation.

(1) Find general conditions on the potential energy
function ¥(r) in the radial equation (23) which will ensure
that the shooting method applied to (23)—(24) yields rig-
orous mathematical eigenvalue—eigensolution pairs E and
R (n).

(2) Employ the shooting method in other quantum me-
chanical systems which have a spherically symmetric po-
tential energy function and obtain highly accurate numeri-
cal approximations for radial eigenvalue-eigensolution
pairs.

(3) Compare the numerical efficiencies of the three
methods for solving the radial eigenvalue problem of the
two-dimensional hydrogen atom: the shooting method,
variational techniques, and the infinite series method.

(4) Explore the mathematical subtleties inherent in the
transformed radial system (7)—(8) of the two-dimensional
hydrogen atom in the case when /= 0. Specifically, is it
possible to justify the assumption listed in Sec. IV that
formed the basis for the / = O calculations of this paper?

(5) Discuss and contrast the differences in the units for
charge, mass, energy, and distance as exhibited in the two-
dimensional and three-dimensional hydrogen atoms.

(6) Obtain exact mathematical expressions for the
eigenvalues for the radial system (4)-(5) [or equivalently
(7)-(8)] of the two-dimensional hydrogen atom. In par-
ticular, can the approximate empirical relationship in Eq.
(18) for the eigenvalues o, (/) be modified to give precise
agreement with the computed values in Table 1?

(7) Determine exact closed-form expressions in terms of
elementary functions for the eigensolutions for the radial
system of the two-dimensional hydrogen atom. To date,
the only exact solutions to the transformed radial differen-
tial equation (14) are the decidedly open-form representa-
tions as infinite series of exponential polynomials [see Eq.
(15)].7

(8) Extend the shooting method to solve the relativistic
Dirac equation for the two-dimensional hydrogen atom
with a logarithmic potential energy function.?*
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Newton’s first two laws of motion are not definitions

James L. Anderson

Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

(Received 8 June 1988; accepted for publication 18 October 1989)

Newton’s first two laws of motion are often taken to be a definition of force. It is argued that they
are true laws in that they make statements about the nature of the physical world. In particular,
the first law can be viewed as asserting the existence of an ensemble of trajectories in a four-
dimensional space along which force-free bodies, if they exist, would move. Such an ensemble,
together with Newton’s absolute time, constitute the essential ingredients of the underlying
geometrical structure of Newtonian space-time. If this view is accepted, it is a relatively simple
matter to describe how special and general relativity differ from Newtonian mechanics.

1. INTRODUCTION

In trying to choose a text for an intermediate mechanics
course I was struck by how often I came across what I
consider to be a completely erroneous interpretation of the
first two of Newton’s laws of motion. One encounters state-
ments such as ‘“Thus the First and Second Laws are not
really ‘laws’ in the usual sense; rather, they may be consid-
ered definitions” (my emphasis).' A more extreme version
of this position is the oft-repeated comment of Sir Arthur
Eddington to the effect that all the first law says is that
“every particle continues in its state of rest or uniform mo-
tion in a straight line except insofar as it doesn’t.”? Often
coupled with such an interpretation is the equally errone-
ous, in my opinion, statement that the first law is a special
case of the second law.

One reason why I would argue that the first two laws of
motion should not be taken to be definitions is that they are
poor definitions. In order to implement them it is necessary
that one know what is a straight line, what is uniform mo-
tion (or rest), and what is mass. Although Newton as-
sumed that these notions were obvious, they are in fact far
from being so. To define a straight line one might, for ex-
ample, introduce the notion of a rigid body. In doing so,
however, one encounters many difficulties. How does one
know that the body is rigid? How does one know that its
length is constant in time? While it is in principle possible
to deal with these objections, the complexities introduced
as a consequence are completely unnecessary. As I will
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argue below, such complex physical systems as rigid rods
are not needed for the formulation of the foundations of
mechanics and, indeed, only find their appropriate descrip-
tion after such a foundation has been laid.

The main reason, however, for rejecting the interpreta-
tion of the first two laws as definitions is that such an inter-
pretation misses the essential physics contained in these
two laws. It also, incidentally, obscures an understanding
of the transition from Newtonian physics to special and
general relativity. And, in addition, it overlooks the fact
that Newton was quite explicit in the Principia in distin-
guishing between definitions and laws. Unfortunately, his
definition of force,

An impressed force is an action exerted upon a body in

order to change its

state either of rest or of moving uniformly forward in a

straight line
and his statement of the first law

Every body continues in its state of rest or of uniform

motion in a straight line, except in so far as it it com-

pelled by forces to change that state
appear to be quite similar in content although the definition
is a sufficient statement concerning the role of a force in
changing the state of rest or uniform motion of a body
while the first law is a necessary statement.

In Sec. II I will argue that Newton’s first law asserts the
existence of an ensemble of trajectories in a four-dimen-
sional space, called here straight lines or free-body trajec-
tories. These trajectories are the straight lines of Newton’s
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