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The laws of physics in d spatial dimensions are interesting and often lead to insights concerning
the laws of physics in three spatial dimensions. A hydrogenic bound system in d-dimensions is
investigated where d is any real positive number, not necessarily an integer, and where a d-
dimensional radial Schrédinger equation is defined by the analytic continuation of the
Schrodinger equation used in integer dimensions, with a d-dimensional potential defined by
Gauss’ law. The fundamental constants and physical relationships in d dimensions are arrived at
by assuming the electric flux obeys a Gausslike law in d dimensions. This fixes the potential and
makes it possible to write down the d-dimensional Schrédinger equation. This equation is then
solved numerically for the ground-state energy eigenvalues, for several different dimensions,
using a fourth-order Runge-Kutta predictor algorithm. The solutions to this equation are
compared to the analogous Bohr model energies in d dimensions and to the results obtained by
others at well-known integer dimensions. There is good qualitative agreement between the two
theories in all dimensions. In addition, the wave functions for the Schrodinger equation are
numerically determined and normalized in order to locate the most probable orbital radius. These
values are compared to the d-dimensional Bohr radii.

I. INTRODUCTION

There has been considerable recent interest in physics in
dimensions other than the usual four space-time dimen-
sions."”” In field theory and superstring theory, space-
times of higher dimension are frequently used where the
extra spatial dimensions are taken to be the same as the
three we currently experience directly. In thin films one
uses two dimensions, and in field theory the 2-D Schwinger
model is often used to teach QED. Many students have
seen or read Flatland ® or some similar book describing life
in a universe with other than three spatial dimensions. The
case of two spatial dimensions has received considerable
attention® ' and an entire society of workers have been
busy examining its features, including a full periodic
chart."' With the recent explosion of interest in chaos and
fractals,'>'? people have also developed an interest in non-
integer dimensions. These fractional dimension sets have
found a variety of applications and several popular ac-
counts of their uses are now available.'* A significant body
of literature exists on these subjects and many students are
very interested in these results and are capable of grasping
the main ideas readily. This recent work, coupled with the
curiosity of our students, led us to calculate and interpret
the bound-state energies and radii for hydrogenic systems
in d spatial dimensions where 4 is any real number (d can
be complex but the results aren’t as interesting).

The hydrogen atom in other than three spatial dimen-
sions is a well-studied problem. Many authors treat this
problem by using the standard Coulomb poten-
tial,'>"1* 18 V(r) = — ke?/r, for the electron~proton in-
teraction in all dimensions. This is both valuable and ap-
propriate for understanding many physical phenomena,
especially surface interactions,” and several exact solutions
were given by Alliluev'® and extended by Herrick.2® Other
workers, however, have pointed out that Gauss’ law gives a
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different potential, one that describes the flux due to a point
source, which depends upon the dimension. The potential
can be extended in a covariant way to other dimensions as
treated by Landau and Lifshitz?' and Reiser?? in two di-
mensions. It is this work that we are building upon; espe-
cially the results of Ehrenfest®* and Sommerfeld,?* and the
two-dimensional results of Asturias and Aragon'' and
Reiser;”? the well-known three-dimensional results as
found in any standard text such as Merzbacher; and the
extensively studied one-dimensional results, particularly
Langhoff,”® Flamm and Schober],?’ and Nieto and Sim-
mons.?’

As a precursor to any analysis in arbitrary dimensions,
and to make perfectly clear what our approach relies upon,
a method of choosing what laws of physics hold is impor-
tant. The key issue for this paper is the form of the electro-
static force law in d dimensions (d dimensions will always
mean d spatial dimensions). We are not selecting a Cou-
lomblike potential for all dimensions. Instead, we begin by
considering the question, how do things spread out??® Giv-
en a point source, how will the gravitational force change
with distance? How will the illumination from a point light
source change with increasing distance? In this paper we
keep this consideration primary by using Gauss’ law to
describe the way that fields behave as a function of distance
ind dimensions. By keeping the unit of charge equal to the
Coulomb, and the unit of distance equal to the meter,
Gauss’ law is then restrictive enough to fix the functional
form of the d-dimensional potential and the units of the
permittivity of free space. Furthermore, we take the speed
of light as still fundamental in all dimensions, fixing the
permeability of free space. With the classical equations of
motion established, the quantum dynamics equations are
arrived at by replacement of the Poisson brackets with the
corresponding commutators and by introducing a factor of
i#i. This is sufficient to establish the units of Planck’s con-
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stant in d dimensions. The details of this unit selection and
further discussions are given in Sec. II.

Once units have been established we make use of the
Bohr theory of the atom (Sec. II1). Every student is famil-
iar with the Bohr model and the resulting picture of atoms
as tiny “planetary” systems. The derivation of radii and
energies of this system in three dimensions only involves
some algebra and can be done by any student. With an
understanding of the electric potential ind dimensions, stu-
dents can generalize the Bohr model to d dimensions, and
can derive the radii and orbital energies of a d-dimensional
Bohr atom.

The original three-dimensional Bohr model led to defi-
nite predictions concerning the spectrum of hydrogen.
When Bohr first proposed this model in three dimensions,
the agreement with experiment was quite good and gave
physicists a hope of understanding the atom.?® Later, quan-
tum physics provided the foundation for understanding the
successes of the Bohr model. The Schrédinger equation,
and later the Dirac equation, helped establish a rigorous
mathematical foundation for understanding the nature of
quantum phenomena. In this article, we will follow this
historic order: We first (Sec. III) discuss the Bohr model;
we then (Sec. IV) use the classical d-dimensional electric
potential that follows from Gauss’ law in the d-dimension-
al Schrddinger equation; we then finally compare the Bohr
and Schrodinger results for both atomic radius and
ground-state energy.

II. UNITS AND EQUATIONS IN d DIMENSIONS
A. Meaning of d dimensions

It is customary to think of the universe as being com-
posed of a space-time with an integer number of dimen-
sions. Casual observation indicates that there are at least
three large spatial dimensions and one temporal dimen-
sion. However, our current laws of physics may not be the
laws of physics on a simple 4-D space-time, they may be the
laws of physics on a complex 10-D space-time manifold
with six dimensions conspiring to give us the dynamics of
interacting particles.*® It is difficult and sometimes contro-
versial to formulate a consistent physics for other dimen-
sions, especially noninteger dimensions. In order to ana-
lyze physical laws in a space with a different number of
dimensions, we have concentrated on Gauss’ law as a
means of establishing useful laws that reduce to the stan-
dard laws in the limit as the number of spatial dimensions
approaches three. Many questions immediately come to
mind concerning the formulation of laws of physics in oth-
er dimensions; what would a 2-D universe be like in terms
of the interactions between particles; how would the laws
of physics behave in 2.6 dimensions; and what does it mean
to have a noninteger number of dimensions?

We use Gauss’ law to fix the way fields may spread out
from a point source in integer dimensions. To extend this
law to noninteger dimensions we simply analytically con-
tinue the arguments that depend upon dimension to those
real values between the fixed integers. This extension to
noninteger dimensions is quite different from having an
underlying fractal®' space that is self-similar. A fractal
space can be everywhere continuous but nowhere differen-
tiable, making it difficult to perform the normal operations
used in calculus. An instructive way to understand the exis-
tence of a continuous fractional dimension space can be
found by considering a simple example. It is common to
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continue integration analytically to d-dimensional spaces
by replacing the volume element with a d-dimensional vol-
ume element and the corresponding functional variables by
d such variables,

ff(xi)d3x~ ff’(x,-)d“x, (1)

where care must be taken to be sure that /'’ (x) is the appro-
priate form of f(x) in d dimensions, and { runs over all
dimensions. If f(x) is dimensional, then dimensional anal-
ysis can be used to help fix the form of /' (x). The integral is
well defined for all values of d and, although it may be
difficult to imagine, d is continuous. This technique is com-
monly used for defining generating functions of orthogonal
polynomials and for convergence analysis.*>*

We also must be clear about how we intend to treat our
time variable. Time is considered to be a continuous one-
dimensional variable regardless of the dimension of the ad-
joining spatial manifold. This provides us with a clear and
unambiguous method for establishing time-independent
eigenvalue equations arrived at by separation of variables.
As a result, the Schrodinger equation takes on its well-
known eigenvalue form.

B. Gauss’ law in d dimensions

It is now possible to discuss the laws of physics in a space
of arbitrary dimensions. To do this we follow Ehrenfest?
and defer to Gauss’ law, which describes how fields
“spread out” in space. We demand that the flux of the elec-
tric field from a charge distribution be equal to the net
charge enclosed

eOde-dA = |pav,

€,V'E=p. (2)
Substituting in the potential gives Poisson’s equation
V2 = p/e€oy, 3)

which gives solutions
—ep=V(r)= —e&r /eud,d—2), d+#2,
V(r) = (/€A ) In(r/ry), d=2, (4)

where r,, is a scale constant, Equations (4) correspond to a
Coulomb force law of the form

F=qq)/€q4,7" . (5)

Here, A, is a dimensionless constant that is equal to the
angular measure subtended by any closed d — 1-dimen-
sional surface in d space. In three spatial dimensions this is
447 steradians, in two dimensions this is 27 radians, and in d
dimensions we have

A, =27Y/T(d /2), (6)

where I'(d /2) is the Gamma function® of d /2.
Equation (5) describes the way the electric flux from a
point source “spreads out” in a d-dimensional space. The
field falls off in accordance with the way the area of a d-
dimensional spherical shell changes with radius. In this
paper d-dimensional physics always refers to the potentials
and force law given by Egs. (4) and (5) and is of the type
used by some, but not all, other authors working on hydro-
genicatomsind dimensions.'"***” Thisis to be contrasted
with other authors who are interested in the Coulomb
problem in d dimensions. They take the potential to be of
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an inverse distance type, even though the number of spatial
dimensions is different from three.’”7-!>-!®

The Coulomb force is still the negative gradient of the
potential for all dimensions; however, we must be careful of
the fundamental constants that appear in the law. The units
on the permittivity of free space are dependent upon the
dimension

[€0s] = C* s°/kg m*, (7

where we have selected the Coulomb, kilogram, and meter
to be our fundamental charge, mass, and length in all di-
mensions. The charge density also depends on the dimen-
sion since the volume element does, hence

[p] =C/m“ (8)

Having fixed our defining equations, and demanding
that the speed of light be the same in all spatial dimensions,
we can fix the permeability of free space;

¢ = ( pog€oa) ~ "%
[ #0a] =kg m?~%/C2. 9

The prescription for quantizing the classical equations of
motion calls for changing the classical Poisson brackets
into commutators and introducing a factor of ifi. In doing
thisind dimensions we introduce Planck’s constant and fix
its units. The classical equations of motion are given by the
Poisson brackets,

QI = {qi!H}’ pi = {Pi,H} (10)
which, after quantization, become
iﬁqiz[qi’H]’ iﬁpi=[pi’H] (11)

for canonical coordinates ¢;, momenta p,, and Hamilto-
nian H. This forces 4 tobe treated in the same way as ¢, and
its units are unchanged in going from one dimension to
another; 4 retains the units of Joule second.

We now have a complete set of consistent units and equa-
tions of motion for our d-dimensional universe. Before
turning to explicit calculation with the Bohr model, it is
worth mentioning this interesting implication of the di-
mensions (examined by Lapidus®* for integer dimensions):
Taking mass, length, and time as fundamental, ¢, #, and ¢
have the units

M L T

e 1 d (=2

01 2 (-1 (12)
c 0O 1 (=1

This matrix has determinant d — 3. This means that if
d = 3, the determinant is zero, hence the rows are not lin-
early independent and it is possible to take a combination of
rows in which M, L, and T all cancel. Specifically, if d = 3,
then the elementary row operation R, — R, — R; =0,
where R, is the ith row, hence, e*/hc is dimensionless. In
contrast, if d #3, the matrix has rank 3, so the rows are
linearly independent, hence no fine structure constant can
be made from €2, A, and c. In other than three dimensions,
the mass of the electron is needed to form a dimensionless
combination. One is reminded that d = 3 is special when
one sees m‘® ~ 2’ in Eq. (20) for the electron velocity. Simi-
larly, one is reminded that d =2 and d = 4 are special
when one sees various quantities raised to powers involving
(d —2) and (d — 4) in Sec. I11.

Of course, only so much can be gleaned from dimension-
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al analysis. Already it is clear that some surprises are on the
way. In Sec. I1I the Bohr model will be solved in d dimen-
sions and those results later compared to the information
revealed via solving Schrodinger’s equation.

III. THE BOHR MODEL

Following the early work of Ehrenfest,”® we calculate
the Bohr energies and radii, using methods similar to those
of an introductory physics class.

A, Case 1: d#£2; d#4
The energy of the atom is
E=T+V=1m’—k,er~¢/(d—2), (13)

where the first of Eqs. (4) has been used for the potential
and

k, = 1/€,,4,. (14)
Using the uncertainty principle,
v=Ap/m="%#/mr (15)

in Eq. (13) and minimizing by setting dE /dr equal to zero,
we find

ry= (#/mke*)"/ ¢ =9, (16)

Alternatively, one may start with

F=ma=m(*/r) (17)
and assume the angular momentum is quantized,

mur=nfi, n=12,3,.., (18)

where 7 is the principal quantum number. Using Eq. (5)
for the force and eliminating v between Eqs. (17) and (18)
yields

r, = (W°H/mke*)" ¢ =9 (19)

in agreement with Eq. (16). This method has the advan-
tage of including the dependence on the principal quantum
number; but the disadvantage of relying on a = v*/r with
no obvious visual image for that when d < 2.

The “velocity” of the electron in the ground state of the
(admittedly naive) Bohr model is given by using Eq. (19)
in Eq. (18),

v, = (kdeZmd-B/ﬁdAZ) l/(4—d)n(2rd)/(4~—a’)‘ (20)

Finally, the energies can be obtained by substituting Egs.
(19) and (20) into (13), yielding

E, = [(d—4)k,e/2(d —2)]
X (B*H/mk ) =D/ @ =D, (21

Equation (21) is plotted for the ground state in Fig. 1 and
several numerical values are listed in Table 1. Note, how-
ever, that Fig. 1 must be interpreted with care: Eq. (4)
shows that V() =0 at r=0 for d <2, but V(r) =0 at
r= w for d>2. Hence the energy is being compared to
different points for the two branches in Fig. 1.

With the calculated velocity, it is a straightforward mat-
ter to calculate the kinetic energy 7. This results in a Bohr
version of the virial theorem,

V= —[2/(d-2)]T. (22)

This result is valid for all dimensions except for d =2
where the logarithmic potential is needed. We will refer to
this result as the Bohr version of the virial theorem since it
does not agree with the general result from basic quantum
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Fig. 1. Ground-state energy predicted by the Bohr (dashed line) and
Schradinger (solid line) theories, in units with m, = #i = ke’ = 1. The
d =2 line separates disjoint energy regimes. For d>2, V() =0, for
d<2, V(0) =0, ford =2, ¥(r,) =0. Comparisons in different regions
must be made with this in mind.

mechanics. This is because the expectation value of the ki-
netic energy and potential energy become infinite and the
assumptions needed to derive the virial theorem are invali-
dated. Liebman and Yorke have examined this question in
some detail.*®

B. Case 2: d=2

The two-dimensional Bohr atom must be considered
separately; the calculation of the Bohr radii is identical, but
the energy levels turn out to be very different. First, consid-
er the radii. The equations used to calculate the radii still
hold, so the radii are given by Eq. (19), which simplifies to

r, = nhi/eymk,. (23)
Similarly, Eq. (20) also holds and simplifies to
v = eyk,/m. (24)

Table I. Several ground-state energies, in units with m, = fi= k&’ = 1.

Schrodinger,
Eq. (37)
Dimension Bohr, Eq. (21) +2x10 ¢ Other authors
0.4 1.1250 1.8526
0.8 1.3333 1.8095
1.0 1.5000 1.8557 1.5775%7
1.4 2.1667 2.2839
1.8 5.5000 5.3839
2.0 0.5000 0.5101 0.526 64"’
+2x10°° +3x10°°
0.726 99>
+3x10°°
2.4 — 2.0000 —2.1678
2.8 - —0.7500 — 0.8110
3.0 — 0.5000 - 0.5000 — 0.5000*
34 —0.2143 —0.1501
3.8 —0.0554 — 0.0087
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The energies are different because in two dimensions the
second (rather than the first) of Egs. (4) must be used. The
7o in Eq. (4) is simply an integration constant that can be
chosen for convenience as the first Bohr orbit,

ro = #/ ek (25)
(Comparison of d = 2 with the familiar three-dimensional
results therefore requires keeping in mind that it was not
possible to use the usual convention of ¥ = 0 at infinity for

d = 2.) With this choice of r,, the two-dimensional Bohr
energies are

L, =1imy’ + V= kzez[% + In(n)]. (26)
C.Case 3:d=4

The four-dimensional Bohr model is totally pathologi-
cal. Attempting to begin in the usual way yields

F=k,/r = mv/r, (27)

ke® = mrv* = n*#*/m, (28)
hence

k,e? = n*#/m. (29)

Equation (29) is overdetermined. The model used here
suggests that a four-dimensional Bohr atom cannot exist
unless the constants of nature have the relation expressed
in Eq. (29); even then, it could not change states.

D. Discussion

The Bohr atom behaves differently, even qualitatively,
depending on the dimension. Various cases are described
briefly below. In each case, the key idea will involve check-
ing how the energy depends on n.

lLd<2andd>4

For these cases, Eq. (21) shows that the energy expres-
sion has a positive coeflicient, multiplied by # raised to a
positive power; hence the energy increases with n. The
n = 1 stateis the ground (lowest energy) state. An isolated
atom cannot be ionized because there are an infinite num-
ber of bound states whose energies increase without limit.
The impossibility of ionizing can be verified from another
point of view: For d < 2 the atom cannot be ionized because
increasing n increases 7 without limit [Eq. (19)], which in
turn increases ¥ without limit [Eq. (4)]. In a related way,
for d > 4, the atom cannot be ionized because increasing n
decreases r without limit, which in turn increases the kinet-
ic energy without limit.

2d=2

These results are qualitatively similar to the preceding
paragraph. Equation (26) shows that the energy increases
with n. The n = 1 state is the ground state. An isolated
atom cannot be ionized because there are an infinite num-
ber of bound states whose energies increase without limit.
Again, Eq. (4) shows that the potential is infinite at infin-
iy.

3. 2<d<4

For this case, Eq. (21) shows that the energy expression
has a negative coefficient, multiplied by n raised to a nega-
tive power. Hence the atom is qualitatively like the familiar
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three-dimensional Bohr atom: The n =1 state is the
ground state. There are an infinite number of bound states,
all with energy less than zero; the atom can be ionized.

4.d=4

The result that the equations are overdetermined here is
unusual and in marked contradiction to the d = 4 Schro-
dinger result, where an inverse-square potential can be sim-
ply treated like a dipole potential.’” These Bohr results do
signal a warning to the cautious student: Bohr theory is
greatly oversimplified and the results, although often intu-
itive, are not to be taken too seriously.

IV. THE SCHRODINGER EQUATION

Following Louck?® and Nieto'® we express the Schro-
dinger equation in 4 dimensions, where d is confined to
integer values, as

2
vyt vy=—inll, (30)
2m ot

where we are in the center-of-mass frame, r is the relative
coordinate between the proton and electron, m is the re-
duced mass of the system, and # is Planck’s constant divid-
ed by 27. We are calculating energy eigenstates and since
our time coordinate is a full 1-D continuous dimension, we
can separate variables to arrive at the time-independent
eigenvalue equation for any integer dimension,

(—#/2m)Votp + Voo = By (31)

The potential is a pure radial function that has the form
given by Eq. (4). Our goal is to separate Eq. (31) in spheri-
cal coordinates, for integer dimensions, to arrive at a single
1-D radial equation. We then analytically continue the so-
lutions of this radial equation to noninteger values of the
dimension.

Going to d-dimensional spherical coordinates, with
d — | angular coordinates and | radial coordinate, the
variables can be separated'®***® for any integer value of d,
and the wave function can be expressed as the product,

Y=R,(NY](6) (32)

where the symbol ¥ [ represents the contributions from the
hyperspherical harmonics that arise in higher integer di-
mensions (or spherical harmonics in three spatial dimen-
sions). This leaves us with a single 1-D radial equation

By
2m - dr dr

L? '
ol + V() Ry = B,y (33)

where L is the angular momentum operator for the d — 1

angular coordinates. It has eigenvalues of /{/ 4 d — 2) for

any given d.***® Introducing the dimensionless variable’
z=BY4 " Dr= (2m/He,uA,) "¢ r, (34)

we can express Eq. (33) as

1 d . d
1l dfa l_)_l’.
[zd“‘dz( dz z

2—d

. +/1]R,,,(z) —0, (35)

z
+
d

where ¥ = /(/ + d — 2) is the dimensionless d-dimension-
aleigenvalue®**® of L %, and A = 2mEB ¥ “~ ¥ /#*. The ap-
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parent difficulty in using Eq. (34) when d =4 is again a
result of the fundamental constants forming an overdeter-
mined set of equations. In four dimensions 3 is dimension-
less and the equation has an irregular singularity at the
origin. When d = 2 the potential term takes on the form
V(z) = In(z) after the transformation, this then corre-
sponds to the equation used by Asturias and Aragon'' and
Reiser.?? Equation (35) is self-adjoint for all 4; thus we can
eliminate the first-order derivative term by the transforma-
tion

R, (2) = P(z)z"' 97, (36)
where the n,/ labels have been absorbed in our definition of

P(2). Substituting Egs. (36) and (4) into (35) gives a sec-
ond-order differential equation for P(z),

d?P(z) _ [l(l+d—2) — (/) (1 —d)(d—3)
dz?

z

270 ‘ P(z) =0 37
— z) =0,
(= + )] 2) (37)
where / is the orbital angular momentum. It is to be under-
stood that for d = 2 we are using the logarithmic potential
in Eq. (37). As presented, Eq. (37) is only valid for integer
values of the dimension. We will now relax this condition
by analytically continuing the solutions of Eq. (37) to non-
integer values. As a result, our definition of quantum me-
chanics in noninteger dimensions amounts to finding solu-
tions to Eq. (37) for noninteger values of 4. Unfortunately,
Eq. (37) is not easily solved for arbitrary d; however, the
form of the equation is enough to tell us about specific
values of d that are particularly important.

This can be seen by examining the singularity structure
of the equation as discussed by Sommerfeld.?* The bracket-
ed expression in Eq. (37) has two singular terms at the
origin for d > 2. Even for the ground state (/ = 0) the effec-
tive potential retains a dimensionally dependent singular
term that only vanishes for d = 1 and d = 3. The vanishing
of this term helps in finding exact closed-form solutions in
d =1 and d = 3. These correspond to Airy’s differential
equation, which is investigated in detail by Langhoff>® and
the well-known associated Laguerre functions.?® It is im-
portant to notice that the d = 0 case is not the simple har-
monic oscillator since the additional term in the effective
potential does not vanish. This singularity structure has
critical values where the singularities become essential (or
irregular) and effect the method of solution. For d > 4 the
essential singularity at the origin assures us that a unique
solution expanded about the origin doesn’t exist. The sin-
gularity is such that there do not exist any stable orbits for
d > 4; all orbits eventually cross the origin. Barrow®® has
pointed out that, in general, the existence of stable periodic
orbits requires 7 F(r) »0as r—0and PF(r) - o0 as r— co.
This difficulty is mimicked in the Bohr model where the
atom cannot be ionized for d > 4. The only other difficult
caseis d = 2. Here, the singularity is changed by switching
to the logarithmic potential, as demanded by Gauss’ law,
and a stable solution can be found. The search for ground-
state solutions is therefore limited to d < 4.

Fortunately we don’t need to solve Eq. (37) analytically
for P(z) in order to compare ground-state energy eigenval-
ues to those of the Bohr model. We have incorporated a
numerical fourth-order Runge-Kutta predictor corrector
algorithm™® to generate numerical solutions for the eigen-
values. Here, a trial eigenvalue is selected and the wave
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Fig. 2. The ground-state wave function #(r), where r = 1 corresponds to
the Bohr radius in all dimensions.

function and its second derivative are calculated from Eq.
(37). Corrections to the trial eigenvalue are made depend-
ing upon the behavior of the wave function. Iterations are
continued until a tolerance of 1:10 ~* is met. Although this
provides a convergent method for determining the eigen-
values, the rate of convergence is very low in the neighbor-
hood of the critical dimensions of 2 and 4 and the tolerance
is weaker, 1:1073. A graphical comparison between the
Schrodinger and Bohr results for the ground-state energies
is displayed in Fig. 1, where we have calculated the energy
eigenvalues for each 0.1 increment in dimension. Table I
gives a list of numerical values obtained for the ground-
state eigenvalues at several dimensions along with a com-
parison to previous work. The difference between Asturias
and Aragon'' and Reiser®? appears rather large but Asturi-
as and Aragon have done a later and more accurate treat-
ment. Both our Schridinger and Bohr results agree quite
well with the results of Asturias and Aragon. As expected,
the d = 3 results agree with the well-known solution to the
3-D hydrogen atom. There is a difference in energies com-
pared to the work of Nieto and Simmons®’ due in part to
the approximation they used in their expansion of the ener-
gy and in using this expansion for small values of . In
addition to the ground-state energy eigenvalues we have
numerically determined the normalized wave functions re-
sulting from the fourth-order Runge-Kutta solutions to
Eq. (37). These wave functions are plotted in Fig. 2 where
the value of 1.0 corresponds to the Bohr radius in every
dimension.

V. CONCLUSION

The solutions to the Bohr model and the Schrédinger
equation for ground-state energies reveal a fair match for
all dimensions (Table I and Fig. 1). This is not too surpris-
ing since the singularity structures of Egs. (21) and (37)
are identical. This immediately reduces the stable bound
states to dimensions between 0.0 and 4.0. Coupled with the
same behavior at d = 2, and the same asymptotic behavior
of the potential, a stronger parallelism is produced. The
ground-state energies, however, only agree exactly at
d =1.61, 3.0, and 4.0. For experiments done at today’s
precision, the Bohr model would easily be discarded in all
other dimensions. Moreover, comparisons across thed = 2
line cannot be taken too seriously. The d = 2 line separates
the solutions into three distinct and disjoint classes; those
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with d < 2, those with d = 2, and those with d > 2. The rea-
son these solutions are distinct is due to the zero of the
potential. For d > 2 it is possible to take the zero at infinity.
This is not possible for the other dimensions. This means
that the regions for d < 2 and d = 2 can be scaled vertically
without changing the results. Within each region, however,
where the same zero is taken, the energy curves are similar.
Thus the even space dimensions of d = 2 and d = 4 repre-
sent critical values that separate the solutions into disjoint
regions for both the Bohr and Schrédinger results. Fur-
thermore, the Bohr and Schrodinger radii also display a
rough qualitative agreement with the wave-function maxi-
mum being near the Bohr radius of » = 1 (Fig. 2). It would
be interesting to do a more detailed study of these wave
functions in all dimensions. Further work on states other
than the ground state would also be of interest.
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The two-dimensional hydrogen atom with a logarithmic potential energy

function
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Recently, a “shooting” method has been used to obtain exact expressions for eigenvalues and
eigensolutions of the two-dimensional hydrogen atom. This paper shows that the shooting
method is easy for undergraduate students to understand and implement numerically. The highly
accurate approximations for both eigenvalues and eigensolutions are then used to contrast the
two-dimensional and three-dimensional hydrogen atoms. Finally, previous methods for solving
the two-dimensional hydrogen atom are compared with the shooting method.

L. INTRODUCTION

Understanding the physical world is inextricably linked
with a clear understanding of the quantum mechanical
model that has proved so successful in describing atomic
processes. Recently, applications of this model to physical
systems in other spatial dimensions' have been made in the
hope of both illuminating the special characteristics of the
three-dimensional world and obtaining rare “exact” solu-
tions to the quantum theory. One such attempt has been
the study of the hydrogen atom in two-dimensional space.
This is the atom formed by the attraction of two electrically
charged particles, an electron of two-dimensional charge
— ¢ and a proton of two-dimensional charge ¢. It is com-
mon knowledge®* that the correct mutual electrostatic po-
tential energy function, the one satisfying Gauss’ theorem,
for such a system in two-dimensional space is a logarithmic
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function of the distance 7 separating the two particles. Neg-
lecting relativistic and magnetic effects, this means that the
time-independent Schrédinger equation in polar coordi-
nates for the relative motion of this system is

[ —# V¥ (2u) + ¢ In(+/r,) |¥(r¢) = E¥(r,d), (1)

where = m,m,/(m, + m,) is the reduced two-dimen-
sional mass of the proton—electron system, # is the two-
dimensional Planck constant divided by 277, and r, is a scale
constant. The goal is to find the energy eigenvalues E and
the corresponding (nontrivial) eigensolutions ¢ of Eq. (1)
which are bounded and square integrable in two-dimen-
sional space:

27T o
f f l¥(r@)|Prdrde < . (2)
0 0
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