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These values of the parameters correspond closely with the
measured values for the reflector that produced the caustic
of Fig. 2. In addition, these values satisfy Eqs. (28)-(29)
and, although the curved inner region focuses at about
z, =12.5, its small angular extent ensures that by
z,, = 4.625, the inner region rays will not have substantial-
ly diverged. Again, for each of the 6400 incident rays, the
interception point (x,, y,) of the reflected ray on the
viewing screen was numerically calculated and plotted in
Fig. 6. This spot diagram pictorially indicates the cluster-
ing of the lights rays on the viewing screen produced by the
reflection from the metallic surface. Again, it is qualitative-
ly similar to the caustic of Fig. 2.

The point of view that we have taken is that the machin-
ery of geometrical optics provides a useful method for
understanding the physical mechanisms that produce
nearfield cdustics. We find that caustics that look qualita-
tively similar but are produced by reflectors of very differ-
ent geometries owe their existence to very different proper-
ties of the reflector surfaces. It is also pleasing to see that
these physical mechanisms, astigmatic focusing from a cir-
cular surface and the focusing from the intersecting
troughlike structures of a square surface, can be numerical-
ly tested in a simple way by the calculation of spot dia-
grams.
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A solution to quantum mechanical probiems of two, three, and four bodies is discussed from the
point of view of two-body harmonic oscillator forces. An exact solution to the three- and four-
body problems is found for harmonic oscillator forces, assuming equal masses. The aim of the
discussion is to make students aware of the real difficulties of the few-body problem.

I have often explained the classical and quantum solu-
tions to the two-body problem to undergraduate students.
However, I find that they often do not appreciate the as-
sumptions on€ needs to make in order to obtain a solution,
nor do they have much inkling of how to go beyond two
bodies, so I decided in my last quantum mechanics course
to introduce students to the three-body problem. To set the
stage, I set an exercise asking the students to solve the
three-body problem in analogy to the two-body solution. I
later told the students that a general solution cannot be
found, but that I can solve it by making some assumptions.
We then went through the derivations presented below,
and it became very clear to the students what one must
assume to obtain a solution. The net result of this exercise
was that the students now really understood the fwo-body
problem and also had some experience with the more gen-
eral few-body problem. I think, therefore, that it is consid-
erably worthwhile to introduce the material, to be dis-
cussed below, in introductory quantum mechanics courses.
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It is also very easily adapted to the few-body Lagrangian
problem in classical mechanics.

For orientation and completeness I shall also present an
outline of the standard'? two-body solution.

1. TWO-BODY PROBLEM

The time-independent two-body Schrédinger equation
is
[ — #72m Vi — (#/2my)V] + V(rp,r,) ¥ (r,,r,)

= E,,¥(r,r,), (N

where E |, is the total energy of the two bodies. Introducing
the relative coordinate r =r, — r, and the center of mass
(c.m.) coordinate R = (m,/M)x, + (m,/M)r, (with
M =m, + m,), Eq.. (1) reduces to

[ — (F/2M)V% — (#/20) V% + V() [¥(rR)
= E,¥(r,R), (2)
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assuming that the potential ¥(r,,r,) depends only on the
distance between the two particles V' (|r, —r,|) = V(7); u.
Equation (2) is solved by separating the variables in ¥ to
w(r) W(R) to obtain ‘

— (##/2M)V; W(R)
and

[ — (#/72u)V% + V(r) Jw(r) = E,w(r). (4)
Thus W(R) is just the solution for a free particle and w(r)
is the standard harmomc oscillator solution for an harmon-
ic potential ¥ (r).""

The reasons that we are able to solve the two-body prob-
lem are that (1) the momentum operator separates into V>

and V% (with no cross term) and (2) V(7) is assumed to
depend on r only.

=Ex W(R) (3)

II. THREE-BODY PROBLEM

The approach presented below is widely used for the
three-quark baryon problem.’ An alternate approach is
discussed by Vladimiroff.*

The time-dependent three-body Schrédinger equation is

2
(_ﬁvz R V§+V(r,,r2,r3))
2m, 2m, 2m,

XY(r,rpr3) = E ¥ (r,ryrs). (5)

We shall hereby assume that the masses of all the particles
are equal, such as the nucleons in a nucleus or the quarks in
a nonflavored hadron. We define the overall c.m. coordi-
nate as '

R=(1/3)(r; +1,+715) (6a)
and the relative coordinate between particles 1 and 2 as

p=(1/12)(r, —r,) (6b)

and the relative coordinate between particle 3 and the c.m.
of particles 1 and 2 as

A= (1/V6)(r; +r, — 2r3) (6¢)
so that
Vi+Vi+Vi=Va+Vi+V), (N

which is a necessary prerequisite for obtaining a solution to
(5). Note that when the particle masses are not assumed
equal, one obtains cross terms (suchas V<V, ) in (7) thus
preventing a solution via separation of variables. If we now
assume a harmonic oscillator potential acting between
each pair of particles

V(r,,ryrs) =%k(’%2 + 1 +753), (8)
with

ry =6 —xl, 9
then

=3k(p®+47), (10)

which, when combined with (7), allows for an exact solu-
tion in each coordinate. That is, upon separating variables

Y(R,p,A) = W(R)w(p)u(r) (11)
gives the uncoupled equations

— (#/2m)Vi W(R) = Ex W(R), (12a)

[ — (#72m)V} + 3ko* Jw(p) = E,w(p), (12b)
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[ — (#72m)V3 + 3kA*|u(X) = E u(). (12¢)

The harmonic oscillator potential is the only potential
where this remarkable separation occurs. OQur assumptions
have been (1) equal mass particles; (2) two-body poten-
tials; and (3) harmonic oscillator forces. An interparticle
harmonic oscillator force is used in the confining of quarks
in baryons® and can also be used for a qualitative under-
standing of nuclei.’

When teaching this material to students, I asked them to
show that the momentum operator does not separate into a
solvable form when the particles are of unequal mass. I also
asked them to consider a Coulomb and cubic potential and
to show where the difficulty in solution lies. These exercises
greatly enhance the students appreciation of the solution
presented above.

II1. FOUR-BODY PROBLEM

Remarkably, we can extend our analysis even further
Define the c.m. vector
R=(1/\/Z)(l'1+l'2+l'3+l'4) (13a)

and the relative vector between the c.m. of particles 1 and 2
and of particles 3 and 4 as

A=), +r—1—1,) (13b)
and thg relative vectors
p=(/2)(r,—ry) (13c)
and
n=(1/42)(r; —1y). (13d)
Equations (13) imply that
VAV VI V=R VIV, 4V, (14)
and
1, & 4 2
V=—k r=—k(A2+p*+ 7)), (15)
2 = 2
*o.

which again we can solve! We have used the same assump-
tions as in the three-body problem.

1V. COMPLETE SOLUTION INCLUDING
EXTERNAL FIELD

The present article is intended to be primarily pedagogi-
cal rather than a complete discussion of the few-body prob-
lem. However, the reader interested in persuing this topic
further is encouraged to look at the articles by Bergmann
and Holz.> In the present work, I have assumed that the
masses of the particles were equal in order to avoid cross
terms in the derivative operators. The absence of these
cross terms ensures a solution via separation of variables.
As pointed out by a referee, the assumption of equal masses
is not really necessary. One can still obtain an exact solu-
tion even in a uniform magnetic field. This is fully dis-
cussed by Bergmann and Holz.%’

V. DISCUSSION

I have not extended the above approach to more than
four bodies; however, keen students should be encouraged
to try. The trick is always to pick appropriate coordinates.
However, the assumption of two-body forces starts break-
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ing down when we consider the more general many-body
problem.

Furthermore, one should realize that, in the real world,

nonseparability is the rule. Usually the forces are not of the
harmonic oscillator types, nonseparability follows, and one
must seek approximate solutions to the few-body problem.

In conclusion, the student now has a very clear under-
standing of the two-body problem (obtained via contact
with the few-body solution), and also has some apprecia-
tion of the more general problem of a few bodies. I recom-
mend physics instructors to include the above material in

their quantum mechanics courses, and also to present simi-
lar techniques in classical mechanics courses.
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Eisberg and Resnick present a simple argument for the energy of an electron in a multielectron
atom using the concept of shielding from electrons in inner shells. The results of such a treatment
are unfortunately confined so as to be out of range of experimental values. Here, the effect of
electrons in outer shells is included, and, in the nonrelativistic region, energies are obtained for
electrons in the first and second shells in reasonable agreement with experiment.

L. THE EISBERG-RESNICK MODEL

This article refers to the treatment of the Hartree theory
for multielectron atoms given by Eisberg and Resnick’ in
their popular textbook on quantum physics. Following an
account of the method itself, the authors present a highly
elegant discussion of how the general features of the results
obtained numerically may be reproduced using an ex-
tremely simple model. Essentially, the Bohr idea of orbits
(or orbitals) is used. The charge corresponding to all the
electrons in the #nth shell is assumed to be spread evenly
over the surface of a spherical shell. The electrons are taken
to be moving in a Coulomb potential corresponding to an
effective atomic number Z, for that particular shell. For
shells other than the outermost one, the value of Z,, is ob-
tained by subtracting from the actual atomic number Z the
number of electrons in inner shells. For argon, with Z equal
to 18, Z, is given as 16, and Z, is given as 8. As a special
rule, it is suggested that, for the outermost shell, a suitable
value of Z,, isjust n. The value of the energy of an electron
in the nth shell is then given by — (Ey) (Z,/n)* where
E,, is the ground-state energy of the hydrogen atom, 13.6
ev.

Such a procedure sums up a great deal of information on
atomic physics. Clearly, it would be inappropriate to *“im-
prove” this model, since its essential feature is its simpli-
city. It may be suggested, though, that the simplest of mod-
els may, and should, be analyzed fully. From this point of
view there do seem to be two ways in which the discussion
of Ref. 1 may be strengthened.
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A. Neglect of outer shielding

In the calculation of Ref. 1 for the electrostatic energy of
an electron in the nth shell, the electrons in shells outside
the ath are ignored. This does not appear to be correct.
Inside a spherically symmetric shell of charge — N,, |e} and
radius r,,, the electrostatic field is zero, but the electrostatic
potentialis given by — N, |e|/ (47€yr,, ). From the point of
view of an electron in the nth shell (n <m), this is a con-
stant addition to potential energy, the wavefunction of the
electron will not be affected, but the energy will be in-
creased. (Slater® is a good general reference for the area,
and a discussion of this point is given on pp. 227-229. The
terms inner and outer shielding are used for the effect of
electrons in shells inside and outside the one under consi-
deration.)

B. Electrons in the same shell

It does not seem possible to obtain the values of Z, for
argon given in Ref. 1 from the model of these authors. Let
us consider, for example, an electron in the second shell. It
is not clear in what way to consider the other electrons in
this shell; this will be a source of uncertainty throughout
this article. One might imagine any number between O and
the full 7 could be regarded as shielding the electron under
consideration (but not 8; an electron cannot shield itself).
This would lead to a value of Z, between Z — 2and Z — 9,
or 16 and 9, while Ref. 1 gives the value 8. Similarly, Z;
would be between Z and Z — 1, 18 and 17, while Ref. 1
gives 16.
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