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Reply to “Comment on ‘In what frame is a current-carrying

conductor neutral?’”’
P.C. Peters

Department of Physics FM-15, University of Washington, Seattle, Washington 98195

(Received 21 August 1986; accepted for publication 30 September 1986)

Paradoxes in special relativity are often formulated in
such a way that an observer at rest in one (S) frame finds
that “A4 will happen” and an observer at rest in another
frame (S’) finds that “4 will not happen,” where 4 is some
effect. The resolution of such paradoxes can take the form
of showing that both observers are correct, consistency be-
ing achieved by some nonintuitive aspect of the transfor-
mation between frames. In general it does not help in un-
derstanding the problem to argue that because 4 happens
intheS frame, 4 must also happen in the S’ frame, particu-
larly if that occurrence is not reasonable from the point of
view of the S’ observer.

Inthis example the S frame is one in which the lattice of a
current-carrying conductor is at rest. The effect is the de-
flection of the conducting electrons in the magnetic field
created by the flowing charges, resulting in a transverse
electric field and a negative volume charge density in the
end. Of course we understand this charge separation oc-
curs at the same time as the steady current is being set up in
the conductor. Therefore, although the process is pictured
as a consisting of two steps, actually there is no time at
which the current is steady and the electrons are undefiect-
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ed or partially deflected.

In the S’ frame, in which the conducting electrons are at
rest and the lattice is moving, there is no magnetic force on
the electrons (because the velocity is zero), and therefore
no transverse electric field and no volume charge density in
the steady state. Because the bulk of the conductor was
neutral before the current started and is neutral in the
steady state, it would seem reasonable that the S’ observer
would expect neutrality in between.

In the scenario described in the preceding comment, the
S’ observer would find a transverse electric field in the con-
ductor as the steady current is set up, the field subsequently
being canceled by movement of electrons in this field. No
explanation is given as to why the S’ observer would expect
such a field to appear (only to be canceled out later), other
than that is what is implied by the transformation of the
two-step process from the S frame to the S frame. How-
ever, because the two steps occur together and are not sepa-
rated in time, a more reasonable view of what happens in
the S’ frame is that no transverse electric field appears in
the conductor as the steady current is being established and
no field implies no deflection.

Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey

07030

(Received 19 December 1985; accepted for publication 15 November 1986)

The one-dimensional hydrogenic atom with the poten-
tial energy

V(x)= — Zée/|x| (1)

has been the subject of a number of papers in this Jour-
nal.'™ Solutions of the Schrédinger equation have been
found with energy levels which, for n > 0, are numerically
equal to those for the three-dimensional potential energy

Vir) = — Ze¥/r. : 2)

However, there has been a controversy regarding the va-
lidity of some of the solutions that have been obtained. In
particular, it has been asserted that in this one-dimensional
problem the odd and even solutions are degenerate.

None of the authors who have investigated the one-di-
mensional hydrogenic atom have noted that the energy lev-
els obtained by using the Bohr model for this system do not
agree with those obtained for the three-dimensional atom.
This may be seen as follows.

The energy of an atom with the potential energy given by

Eq. (1) is
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E=p*/2m — Zé*/|x|. (3)
The Bohr-Sommerfeld-Wilson quantization condition
is

nh=§pdx=4fmpdx

0

"X m 2\1/2
= 4f (2mE + 2mZe ) dx
o x

=27(2mZe*x,, )"/ = 2m( — 2mZ%*/E)"'%  (4)
Thus
E= —4Z2E /n?, (5)

where E, = me*/2#°.

The energy levels given in Eq. (5) are four times those of
the corresponding model in three dimensions. This may be
understood as follows. In one dimension the classical mo-
tion is oscillatory and the total energy equals the maximum
potential energy, which is a negative quantity. When the
potential energy is a maximum, the kinetic energy, which is
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a positive quantity, vanishes. Thus one obtains an addi-
tional factor of 2 in the energy compared with the three-
dimensional model. The amplitude of the oscillation is
X,, = n’ay/2Z, where a, = #*/me*. This distance is half
the radius of the three-dimensional model, and provides
another factor of 2 in the expression for the energy.

Also, one may note that the period of oscillation of the
electron in the one-dimensional Bohr model of the hydro-
genic atom is

T =2m7n*(#/me*)4Z 2, (6)

which is one fourth of the period of the three-dimensional
atom. This is consistent with Eq. (5).

For a relativistic atom the linear momentum is obtained
from the relation

p’c* = (E + Ze*/|x|)* — m*c. N
In this case the quantization condition is

nh=§pdx=4J‘mpdx
] dx

4 [ 2 -]

= (4Ze*/c)I(¢€), (8)

where € = Ze*/mc*x,, = (1 — E /mc?) and

1
I(e) =€_1/2f [e+2(1 —€)u— (2_5)u2]1/2d_“,
o u

(9)

with u = x/x,,.

The integral I(€) is logarithmically divergent at ¥ = 0 and
the areas enclosed by the phase space trajectories for the
relativistic problem are infinite. In order to calculate the
lowest-order relativistic correction to Eq. (5) one may cut
off the contribution of the very high momentum by replac-
ing the lower limit of integration in Eq. (9) by the small
number 6. This is equivalent to replacing Eq (1) by the
truncated potential energy

Vix) = —Zeé*/(|x| + 6x,,). (10)
Then one obtains the implicit expression
nw 1—¢€ T N )
= — 1—e€
2Za ((2e—52)”2)(2 Femd=a)
+In(e) + 7, (11)

where @ = ¢*/#ic and 77 = In(258¢) is an infinite constant
which is independent of the energy.

To lowest order in € one again obtains Eq. (5). If one
chooses § ~a?, the logarithmic terms may be neglected for
the purpose of computing the radiation spectra. Then the
energy including the first relativistic correction is

E=mc*[1 - (2Z%%/n*)(1 — 4Za/nm)]. (12)

Nieto® and Spector and Lee® have obtained solutions of
the relativistic Schrodinger (Klein—-Gordon) equation for
the one-dimensional hydrogenic atom with energy levels
given by

E =mc*[1 + Z%% (n + 5)?]'?,
where n is a non-negative integer and s=

[1+ (1 —4Z%?)"?]/2. Expanding Eq. (13) to include
the first relativistic correction one obtains®

E =mc*(Za) (1 — Za/2),

(13)

(n=20)
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Fig. 1. Plots of phase space trajectories for the one-dimensional hydro-
genic atom for n = 1, 2, 3. The phase space areas are proportional to .
The units are P = pay/fi and X = x/a,.

2.2
=i (E 232w
(14)

It is of interest to examine the phase space trajectories
that are unusual in appearance compared to the more fa-
miliar one-dimensional problems. These are plotted in Fig.
1 for the first three energy levels. As n increases, the ampli-
tude of the oscillations increases proportional to 7% and the
phase space area enclosed by the trajectories is proportion-
al to n. The logarithmically infinite contribution to the
phase space areas for the relativistic trajectories comes
from the infinite momenta at x = 0. For finite momenta the
trajectories are essentially identical for the relativistic and
nonrelativistic cases. The figure was computed and plotted
using a simple BASIC program on a Digital Equipment Cor-
poration Professional 350 microcomputer.

The status of the solutions of the Schriédinger equation
with even parity and odd quantum number has been a mat-
ter of controversy for more than 25 years. If one allows only
even values of the quantum number, the Bohr model pre-
dictions of the energy levels of the one-dimensional nonre-
lativistic hydrogen atom are in agreement with those of the
Schrédinger equation. Alternatively, if the singularity at
the origin divides the real axis into two independent re-
gions, then motion in the Bohr model is restricted to the
regions x < 0 or x > 0. For these conditions the phase space
is one half that considered above and the energy is reduced
by a factor of 4 factor in agreement with the Schrédinger
equation result.

The agreement between the energy levels obtained from
the solutions of the nonrelativistic three-dimensional
Schrodinger equation and the predictions of the Bohr mod-
el is somewhat fortuitous. In the Bohr model the principal
quantum number is replaced by the angular momentum
quantum number. But the solutions of the Schrodinger
equation are degenerate with respect to the angular mo-
mentum quantum number. Furthermore, the solutions of
the Schrodinger equation for the potential energy in Eq.
(2) are not the same in two’ and three dimensions, while
for the classical orbits in the Bohr model there is no differ-
ence. (The difference between the two- and three-dimen-
sional case vanishes in the limit of large quantum
numbers. )

The solution of the problem presented here is straight-
forward. Because of the unusual phase space it may be of
interest to present this material in an introductory quan-
tum mechanics course as a supplement to the usual exam-
ples.
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Erratum: “Problem: The effective weight of a sliding block on a recoiling
inclined plane (wedge)” [Am. J. Phys. 55, 777 (1987)]

George W. Ficken, Jr.

Physics Department, Cleveland State University, Cleveland, Ohio 44115

The following correction should be made in the solution
to the problem cited above: On p. 847, the graphs are la-
beled in reverse order; the one closest to the vertical axis

should be M = 0.01m and the one farthest away should be
M= 5m.

Erratum: “Order-of-magnitude ‘theory’ of stellar structure” [Am. J. Phys. 55,

804 (1987)]

George Greenstein

Department of Astronomy, Amherst College, Amherst, Massachusetts 01002

In a personal communication, Ralph Baierlein has kind-
ly pointed out an error in the derivation of the nuclear
reaction rate [Eq. (19)]. This derivation improperly com-
bined Z .., the quantum-mechanical tunneling prob-
ability ar a given energy E, with & (> E), the statistical
probability of a particle possessing any energy greater than
E.

The correct method is to multiply Z ... by Z [Eq.
(11)], the statistical probability of a particle possessing

energy E. One then determines the height and width of the
resulting Gamow peak in the usual manner, and finds the
nuclear reaction rate to be a factor (E,, /kT)"/* greater
than that given in Eq. (19). This alters the final results as
follows: The stellar radius [Eq. (22) } and mass [Eq. (24) ]
are multiplied by (E,, /kT)'’®, while the luminosity [Eq.
(23)] is multiplied by (E cax /kT)3'®. Because E,,,, /kT'is
not large (it is of order 8 in the Sun), the correction is not
numerically significant.

SOLUTION TO THE PROBLEM ON PAGE 39

Let 7 denote the time to be calculated. Let R, T}, denote
the radius and period of the original orbit. (T, =1 yr.)
Take the Earth’s initial velocity as having an infinitesimal
component perpendicular to the initial position vector. The
Earth will thus go into an elliptical orbit with the Sun at one
focus. We will eventually take the limit as this perpendicu-
lar component goes to zero and the ellipse becomes a
straight-line segment, a degenerate ellipse with eccentric-
ity,e = 1.

In the elastic collision with the mirror, the Earth’s total
energy does not change. Hence the semimajor axis and or-
bital period do not change: a = R and T = T, In order to
exploit Kepler’s second law, the constancy of areal veloc-
ity, we show in Fig. 1 a nondegenerate ellipse. In the limit
as b—0, the Sun moves to the left-hand vertex (V) and the
point W moves to the center of the ellipse. Since the dis-

w

b
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tance of the Earth from the Sun when the collision occurs is
R = a, we see that W is appropriately taken as the position
of the Earth immediately after the collision. To reach the
Sun, the Earth must traverse } of the perimeter of the el-
lipse, but this is the fast part of the orbit and much less than
1 of a year is required. In the time of interest, 7, the Earth
sweeps out the shaded area shown, whose value is (mab /
4 — ab /2). The time required to sweep out the total area of
the ellipse, 7ab, is just T;,. Fortunately, the ratio of these
two areas is independent of the eccentricity of the ellipse.
By Kepler’s second law,

7= (1/4 —1/27)T,=0.091 yr.

We note that this time is satisfyingly less than the time
required to reach the Sun if the Earth is simply released
from rest at a distance R, this latter time being 7' = 27/
T,=0.177 yr. [See S. Van Wyk, Am. J. Phys. 54, 913
(1986).]

Robert H. Romer
and Dudley H. Towne
Department of Physics

Ambherst College
Ambherst, MA 01002
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