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The adiabatic theorem has been investigated by studying an analytic example of an aging
harmonic oscillator. Closed-form solutions to the corresponding time-dependent Schrédinger
equation are available and the validity of the theorem can be explicitly tested. The results are
consistent with the conventional proof by means of the series expansion method in the

perturbation theory.

I. INTRODUCTION

The adiabatic theorem' is one of the backbones of the
time-dependent perturbation theory in quantum mechan-
ics. The essence of the theorem is as follows: Consider a
quantum system whose Hamiltonian contains a parameter
Jf, which varies slowly with time. The requirement of
“slow” variation means that the time variation of f(#)
should not cause a substantial variation of the Hamiltonian
in a time of the order of the natural periods of the system
with constant /- Consequently, at any instant of time, the
Hamiltonian may be treated as constant and an approxi-
mate solution can be obtained by regarding the Schro-
dinger equation as time independent,

H(f)u,(fix)=E,(fHu,(fx), (1)

with u, ( fix) and E, (f) being the eigenfunctions and
eigenvalues of the Hamiltonian H( /). Here, x stands for
all the independent variables of the problem. In other
words, if Eq. (1) can be solved at each instant of time, we
expect that a system that is in a nondegenerate state
u,{f(0),x) with energy E, ( f(0)) at £ = O is likely to be in
the state u, ( f(¢),x) with energy E,(f(2)) at time ¢, pro-
vided that H ( f(¢)) changes very slowly with time. Conven-
tionally, the adiabatic theorem is proved by means of the
series expansion method in perturbation theory. It is there-
fore of interest to give examples in which closed-form solu-
tions are available and the validity of the theorem can be
explicitly tested.

The very simplest example that comes naturally to mind
is a harmonic oscillator with a slowly aging spring con-
stant. In this case, we may model the Hamiltonian by

(P +x%)/2, <0,

H®) l[p2+x2 exp( —€1)]/2, t>0, (2)
where f(t) = exp( — et) with e« 1. For convenience, we
have set the units such that Ai=1,m=1,and w = 1. In
this article, analytic solutions to the time-dependent Schro-

dinger equations are shown. Implications of the results are
~discussed as well.

II. ANALYSIS
The model Hamiltonian of an aging harmonic oscillator
is
@+ x%)/2, t<0,
[P +x2exp(—et)]/2, t>0.

For ¢ <0, we suppose that the system is in one of the sta-
tionary states of a harmonic oscillator. Our task is then to
find the solutions to the time-dependent Schrédinger equa-

Ho =
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tion for ¢ > 0, which satisfy the continuity boundary condi-
tion of the wavefunction at = 0, i.e.,

Y(xt=0")=¢(x,t=07"). 3)
For simplicity, we consider only two cases; namely,

(1) ¢Y(x,t<0) = gy(x)exp( — iEyt),
and

(i) 9P(x,t<0) =@, (x)exp( — iE\t), (4)

where @, (x) = (1/7)"* exp( — x*/2) is the harmonic os-
cillator ground state wavefunction with energy E, = §, and
@, (x) = (4/m)"*x exp( — x*/2) is the first excited state
wavefunction with energy E, = 3.

The time-dependent Schrédinger equation for 730 is
given by

1 ( — g—z- + x? exp( — et))zﬁ(x,t) = ii (x,t). (5)
2 x> ot

Let us consider the first case now. With the ansatz
Yo(x,1) = expla(t)x® + c(1)], (6)

where a(?) and c(2) are some arbitrary functions of ¢, we
obtain, by equating the coefficients, the following equa-

‘tions:

2a(t) = i4a* — i exp( — et), (7a)

¢(t) = ia. (7b)
By Ricatti transformation,

2a(t) = iF(t)/F(1), (8a)
Eq. (7a) yields

F(t) + exp( — e)F(1) = 0. (8b)
Introducing the variable s(z),

s(t) = (2/€)exp( — et /2), (9a)

we can reduce Eq. (8b) to a zeroth-order Bessel’s differen-
tial equation

d’F 1 dF
— = 4+ F=0, 9b
ds* t s ds + ©b)
whose solution is, of course, given by
F(s) = CJy(s) + CzYo(s), (9¢)

for some arbitrary constants C, and C,. Here, J,(s) and
Y, (s) are the zeroth-order Bessel functions of the first and
second kind, respectively. Thus a(¢) can be expressed as

a(t) = (ies/$){[CJ,(s) + C,Y,(s)1/

[CTo(s) + CY,(s)1}. (10)
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With Egs. (7b), (8a), and (9¢), we can obtain
c(t) = Llog[Cy/F(s)], (11)

where C, is an arbitrary constant. In order to satisfy the
boundary condition, we must require

(i) A=C/Cy= — [Y,(s(0)) + iY,(s(0))]1/
[Jols(0)) + (s (0)}]
and , (12)
(ii) C,= (1/m)'?F(s5(0)).

Hence, with all these results, we are able to determine the
time-dependent wavefunction for > 0,

Yo(x,2>0) = (1/m)"*{[4Jo((0)) + Yo(s(0))]/
[AT5(s) + Yo(s) 132
Xexp((ies/$){[AJ,(s) + Y, (s)]/
[AJ,(5) + Yo(s)13x7). (13)

Now, we turn to the second case. Here, we will try the
ansatz

P (x,t) = x exp[b(1)x* + d(1)], (14)

with b(t) and d(t¢) being some arbitrary functions of time.
Following the same procedure as in the first case, we will
then obtain the time-dependent wavefunction for ¢ > 0,

1 (x,t>0) = (4/7)/*{[4J4(5(0)) + Y,{s(0))1/
[A-Io(s) + Yo(s)]}3/2

x expl (ies/$){[AT,(s) + Y,(s)]/
(AJo(s) + Yo(5)13x%), (15)

where A4 is given by Eq. (12).

Up to now all the calculations shown above are exact. In
Sec. III we will discuss the time evolution of the wavefunc-
tions under the adiabatic approximation; i.e., e<1.

I11. DISCUSSION

In this section we examine the time evolution of the
wavefunctions under the assumption that the process is
adiabatic, i.e., €€ 1. With the large argument asymptotic
expansion of the Bessel functions, it can be easily shown
that :

A=~i (16)
In the small ¢ limit, namely, s(¢) > 1, the wavefunctions are
given by
Yo (x,t>0) ~ (1/7) V% exp( — €t /8)

Xexp[ — (x2/2)exp( — €t /2)]
xexp{ —i[1 — exp( —et/2)]/€}
and
¥, (x,t>0) ~ (4/7)"/* exp( — 3et /8)x
xexp[ — (x*/2)exp( — €t/2)] amn
xexp{ — i3[1 — exp( — €t/2)1/€}.

It is apparent that these wavefunctions are exactly the re-
sults of applying the adiabatic theorem; that is, solving Eq.
(1). Beyond the small ¢ limit, the spatial dependence of the
wavefunctions is basically the same, but extra phase factors
appear. This can be easily recognized if we rewrite the
wavefunctions as follows:
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Yo(x,t>0) = (e/7) 4 [J3(s) + Yi(s)]"*
xexp{ —i[(1/€) — (7/8) — (6/2)]
xexp( — (es/H{[J3(s) + Y(s)]/
[J23(s) + Y2(s)]}"?
Xexpli(2¢ — m)/2]x%)

and

¥ (x,t>0) = 2QV/me IG5 (s) + Yi(s) ]*
xexp{ — i[(3/€) — (37/8) — (36/2)]x
Xexp{ — (es/${[J3 () + Yi(5)]/
[Ji() + Y3(s)]}7?
Xexpli(2¢ — 7)/2]x%),

where
‘tan @ = Y,(s)/Jy(s)
and
tan ¢ = [J,(5) Yo(s) — Jy(s) Y (s)]/

[Yo ()Y, (s) + T ()], ()] (18)

Of course, its time dependence is very complicated.

All these analyses explicitly show that the adiabatic
theorem is valid only in the limit s(¢) > 1, i.e., the small ¢
limit, in this example. This criterion can be reexpressed in
terms of the Hamiltonian H(¢) of the system as follows:

' JH(¢)
ot

<|w(HH(1)), (19)

wherew(f) = exp( — et /2). This means that the Hamilto-
nian undergoes a small fractional change in a typical period
of the system. Of course, this is exactly the basic criterion of
the validity of the adiabatic theorem stated in Sec. I. The
physical rationale behind the criterion is that beyond the
limit s(¢) > 1, the energy levels become closer and closer
together so that the system can undergo a lot of transitions
between energy levels very easily; this implies that the ag-
ing process of the harmonic oscillator is, in fact, no longer
adiabatic.

Allin all, we have shown in the above an investigation of
the adiabatic theorem by studying an analytic example of
an aging harmonic oscillator. Closed-form solutions to the
corresponding time-dependent Schrodinger equation were
obtained and the validity of the theorem was explicitly test-
ed. The results are consistent with the conventional proof
by means of the series expansion method in the perturba-
tion theory.
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