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A study of barrier penetration in quantum mechanics

Jeff D. Chalk

Physics Department, Southern Methodist University, Dallas, Texas 75275
(Received 22 December 1986; accepted for publcation 16 April 1987)

The Schrodinger equation is solved for the truncated Gaussian potential barrier using a power
series solution and a general expression is obtained for the transmission coefficient. For this
potential barrier, computer calculations show only a trace of the oscillatory behavior that
characterizes the penetration of a rectangular barrier. The oscillations diminish rapidly as the
discontinuity in the potential function approaches zero. The results indicate that it is the
unrealistic discontinuities in potential models that cause such oscillatory behavior.

L. INTRODUCTION

It is comonplace in an introduction to quantum mechan-
ics to include a discussion of tunneling using the rectangu-
lar potential barrier as a model. A graph of the transmis-
sion coefficient versus the energy, such as the graph shown
in Fig. 1,’ reveals the interesting feature that the coefficient
varies in an oscillatory fashion for energies greater than the
barrier height. The question was raised in a recent class as
to whether this oscillatory behavior is peculiar to the rec-
tangular shape or characteristic of other potential barriers
as well. The pursuit of the answer to this question led to a
study of barrier penetration in the case of a truncated
Gaussian potential. This potential was chosen because it
allows a convenient comparison of results for barriers with
different amounts of abrupt change. The problem turns out
to be quite instructive and requires some computer pro-
gramming.

The initial task will simply be to solve the Schrodinger -

equation for the assumed potential function. It will be
found that even and odd power series solutions are readily
obtained and these are used in a derivation of the transmis-
sion coefficient 7. A calculation of T is carried out for a
number of energies. The results for two different barrier
widths, presented graphically, are readily compared and
provide the basis for the final discussion and conclusions.

II. THE GAUSSIAN POTENTIAL BARRIER

The specific one-dimensional potential function consid-
ered is expressed as

_ Ve, Ixl<b,
Vix) = {O x| > b, (1)

where ¥, denotes the barrier height and S and b are param-
eters that determine the shape and range. The general form
of this function is shown in Fig. 2. The development pro-
ceeds then with a statement of the Schrédinger equation for
the region |x| < b:

—# d%y 2,2
- Ve #* ¢y=Ey.
2m  dx? +Ve y=E/ @
By introducing the dimensionless variable £ = ax, where

a = (2mVy/#*)"'?, and denoting y = E /V,, one finds that
Eq. (2) reduces to

d2¢ —3252/112
7T —e Y+r¢=0, |5|<ab. (3)

A Maclaurin series expansion of e ~#*"/ together with
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the series substitution

y= > a,&" (4)
n=0
leads to the recursion formulas
a,= (1 —=yp)a,/2,

a;=(1—7)a,/2,

5l
=—2 la-
an n(n—l) ( y)an—Z

e 1y U
+Z(—7,1-)(£) a,,_z,_Z], n>4, (5)

=1 a

where!’ = (n — 2)/2ifniseven,and!’' = (n — 3)/2ifnis
odd. The choices (a;=1, @, =0) and (ay =0, a,=1)
then yield separate, well-defined even and odd series solu-
tions, denoted as u rather than :

U, = zané‘n

n even

A=p&> [A=p?¥2— (B/a)’] s4
=1
o T 4-3 g

+ -, (6a)
U, = 3 a, £"

n odd

_e, 0-=ne’
§+ 72

2 2
5-4

Now one finds that the multiterm recursion relation (5)
thwarts any attempt to display these series in such a way
that a pattern of successive terms is seen by inspection.
However, for the purpose of numerical calculation, such a
display is quite unnecessary. In an evaluation of these sums
by means of a simple computer program, successive terms
are determined easily by means of Eq. (5), and that is all
that is needed.

The question of convergence needs to be addressed at
this point. The solution given by Eq. (4) is in the form of a
Taylor’s series expansion about the origin, which is an ordi-
nary point of the differential equation (3). Furthermore,
the variable coefficient multiplying # in Eq. (3) is regular
at & = 0, and the equation has no singular point. It is well
known that in such a case, the genéral solution can be writ-
ten as a Taylor’s series expansion about the origin, which
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Fig. 1. 'The transmission coefficient for a rectangular barrier as a function
of E /V,. The barrier height ¥, is equal to 2#*/mb 2, where b denotes the
barrier half-width.

converges for all £.% It may be concluded without further
ado, the multiterm recursion relation notwithstanding,
that the solutions #, and u,, are convergent for all £, and in
particular for the range pertinent to this problem, namely,

—ab <& <ab. Indeed, it is knowledge of the foregoing
that provides the motivation for a power series solution in
the first place.

The barrier height for this study was first assumed to
satisfy the relation (2m Vb 2/#°)'/2 = 2 in order to facili-
tate a comparison of the final results for the transmission
probability with the results of a similar calculation for a
rectangular barrier of the same height and width. (Recall
Fig. 1.) The width parameter ¢ = 1.25b was then assumed,
keeping the same barrier height, ie., (2mVy?/
#)1/2 = 2.5. In both cases the ratio 8%/a? characterizing
the potential was assumed to have the value 0.4. With these
assumptions it was found that the convergence is sufficient-
ly fast that 37 terms represented each of the series u, and u,,
to an accuracy of seven significant figures or more for val-
ues of £ in the interval — 2.5<£<2.5 and for energies in the
range O E<8V,. Graphs of these solutions for two arbi-
trarily chosen energies are shown in Figs. 3 and 4. It may be
noted from these figures that for E < V' the series #, and «,,
resemble somewhat the functions cosh £ and sinh £, where-

- -b 0 b ¢ x

Fig. 2. Truncated Gaussian potential barrier Vpe ~#™ of width 2b or 2¢.
The constant 87 is equal to 1.6/b 2 and the parameter c is equal to 1.25b.
The discontinuous change in the potential at the “edges” of the barrier
decreases as the barrier width increases.
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V(x)

Fig. 3. Even and odd power-series solutions of the Schrodinger equation
with a truncated Gaussian potential for the energy E = 0.5V, The graphs
of the solutions are superimposed on the graph of the potential function.
The parameters of the potential are the same as those of the potential
shown in Fig. 2.

as for E> V they are oscillatory in their behavior.

The general solution of the Schrédinger equation then
for a particle incident from the left and with energy
E = #k*/2m is of the form

Ae’™* 4 Be~**, x< —b,
Cu,(ax) + Du,(ax), |x|<b, N
Fe'*, x>b,

where 4, B, C, D, and F denote constants. To proceed with
a derivation of the transmision probability, one may im-
pose the boundary conditions that ¢ and ¥’ be continuous
atx = + b. The matching conditions atx = b give Cand D
in terms of F, and those at x = — b give C and D in terms of
A and B. On eliminating C and D, one finds

F

r ——'ka'e (ut’)ue_u:’ uo)

(au, — iku,) (au, — iku,) ’

— 2ikb

V()

o

Fig. 4. Even and odd power-series solutions of the Schrédinger equation
with a truncated Gaussian potential for the energy E = 2¥,. The param-
eters of the potential are the same as those of the potential shown in Fig. 2.
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Fig. 5. The transmission coefficient for the truncated Gaussian barrier
Voe = 19%/%" a5 a function of E /V,, for ¥, = 2#?/mb>. The upper graph
shows that the scale for T must be quite large in order that the variations in
T be observed for energies considerably greater than the barrier height.

where #, and u, denote derivatives of the functions », and
u, with respect to &, and the suppressed argument for each
of these four functions is ab. The expression u,u, — u. u,
will be recognized as the Wronskian of u, and u, , which is
independent of the argument. This constant is easily eval-
uated using £ = 0, and it is found for this or any other value
of & (verified by computer program) to have the value of
unity. Thus the final expression for the transmission coeffi-
cient, written in terms of the ratio y = E /V, = k */a?, is
2

£ = ”2 2 z 2 2y (8)
4 (u” +7us) (u + yug)
The matching conditions may be used in a similar way to
obtain an expression for the reflection coefficient R = |B /
A |*and to verify the familar relation, R 4 T = 1. This deri-
vation, however, is not necessary to this study and is ex-
cluded.

Equation (8) provides a convenient means of computing
T for various values of the energy ratio E /V,. For the bar-
rier widths chosen, one sets @b = 2 and ac = 2.5, and use is
made of Eqs. (6a) and (6b) in the calculation of u,, u,,
and their derivatives. A graph of the results for the smaller
barrier width is shown in Fig. 5, where it is observed that
the oscillatory behavior is discernible only on a greatly en-
larged scale. Figure 6 gives the results for the greater width;
there it is seen that the variations are quite small, even
though the scale for T'is greatly enlarged. For even greater
barrier widths it was found that the oscillations become
vanishingly small.

T=

1. DISCUSSION

The rectangular barrier and the fitst truncated Gaussian
barrier considered in this study satisfied the same height—
width relation, namely, m Vb >/#* = 2. The Gaussian bar-
rier was then studied using the greater barrier half-width
¢ = 1.25b. Listed in this order, these barriers represent a
decreasing measure of abrupt change in the potential func-
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Fig. 6. The transmission coefficient for the truncated Gaussian barrier
Vye™ /%" a5 a function of E /¥, The barrier height is equal to 3.125 #2/
mc?, where 2c is the barrier width. The upper graph reveals only slight
variations in T in spite of the greatly enlarged scale. A comparison with
Fig. 5 indicates that the magnitude of the variations decreases rapidly
with increasing barrier width.

tion at the “edges” of the barrier. On the other hand, a
comparison of Figs. 1, 5, and 6 reveals a pronounced de-
crease in the magnitude of the oscillations in T for E > V.
Relative to the results for the rectangular barrier, the varia-
tions are more than two orders of magnitude smaller in the
case of the Gaussian barrier with the smaller width, and
three orders of magnitude smaller in the case of the Gaus-
sian barrier with the greater width. For even greater barrier
widths the variations diminish markedly as significantly
less potential is truncated.

It should be mentioned that a similar study was carried
out for the parabolic potential barrier

Vo1 =x%/b%), |x|<b,
Vix) = [o x| >,

where mV,b 2/#* = 2 was assumed. The results obtained
were similar to those reported above for the Gaussian bar-
rier, although the variations in T were not quite as small.
The derivation and calculation for this potential are left as
a possible exercise for the reader.

The results summarized above, obtained as they were for
particular potential functions, do not permit a certain con-
clusion. They strongly suggest, nevertheless, that the dis-
continuous change in the potential function and its slope in
the case of the rectangular barrier underlie the relatively
large variationsin T that occur for energies greater than the
barrier height. It is also suggested that the remnant of such
behavior that occurs in the case of the truncated Gaussian
potential stems from the discontinuous change in the func-
tion or its slope. One would expect from these results, more
generally, that the smaller the abrupt change is in a poten-
tial barrier, the smaller will be the variations in 7 for
E >V, Although the wave nature of the atomic system
plays an important role in the existence of these variations,
it is the unrealistic discontinuities in the potential models
that seem to be responsible.
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'The graph shown in Fig. 1 was obtained by means of a computer pro-
gram based on Eqs. (17.5) and (17.7) of L. L. Schiff, Quantum Mechan-
ics (McGraw-Hill, New York, 1968), 3rd ed., p. 103. There a is used to
denote the barrier width. A similar graph appears on p. 104 of the same
book.

2J. Mathews and R. L. Walker, Mathematical Methods of Physics (Benja-
min, New York, 1970), 2nd ed., p. 14.

3J. L. Powell and B. Crasemann, Quantum Mechanics (Addison-Wesley,
Reading, MA, 1961), p. 118.

Physics of a ballistic missile defense: The chemical laser boost-phase

defense
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The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase
defense are investigated. After a brief consideration of simple physical conditions for the defense,
a calculation of an equation for the number of satellites needed for the defense is made along with
some typical values of this for possible future conditions for the defense. Basic energy and power
requirements for the defense are determined. A summary is made of probable minimum
conditions that must be achieved for laser power, targeting accuracy, numbers of satellites, and

total sources of power needed.

L. INTRODUCTION

Research and development for a possible space-based
ballistic missile defense has been made a national goal with
the Strategic Defense Initiative. The feasibility and wisdom
of building one has become a major public debate. Much
light can be shed on what can and cannot be done and the
probable requirements for such a defense through an analy-
sis of the basic physics of the defense.

In this and future articles on the same subject, the goal
will be to present such an analysis on specific proposals that
have been made for this defense either for the missile boost
phase or later stages of the missile. Most of the physics in
this analysis will be sufficiently basic that it can be intro-
duced in upper division physics courses at the undergradu-
ate level that would deal with the physics of nuclear weap-
ons or the applications of physics to society.

In Sec. II is a summary of how the chemical laser oper-
ates and a discussion of the satellite mode and other basic
requirements for a chemical laser defense. Section I11 is the
most important one in the article in which the number of
satellites needed for a boost-phase defense is determined
through a general equation. In Sec. IV the minimum ener-
gy and power reqmrements for this laser defense are estl-
mated. A summary is made in Sec. V.

11, MECHANISM AND REQUIREMENTS FOR A
CHEMICAL LASER DEFENSE

The chemical laser defense would use a hydrogen flu-
oride (HF) laser or its companion, the deuterium fluoride
(DF) laser. The HF laser operates at a wavelength of 2.7 i,
and the DF laser at 3.8 u. Both wavelengths lie in the in-
frared.
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The pumping energy for the laser is supplied by the
chemical reaction:

H, + F,—2HF,

where H, and F, are hydrogen and fluorine in their normal
diatomic form. For the high-power continuous-wave lasers
needed for missile defense, the F, is dissociated into F be-
fore reacting with H,. Part of the energy that is produced
by this chemical reaction is absorbed by electrons of the
molecule as they are stimulated into a higher-energy vibra-
tional state.

The larger number of hydrogen fluoride molecules with
electrons in the upper-energy state, compared to the num-
ber with electrons in the lower-energy unexcited state, as a
result of the chemical reaction creates a population inver-
sion that is necessary for the lasing to take place. The reac-
tion is kept ongoing by continually pumping new hydrogen
and fluorine into the reaction chamber and the laser contin-
ually operates as long as this happens.

The infrared beam created by the HF laser would be
almost completely absorbed if transmitted through the
Earth’s atmosphere. Thus the lasers can only be used
exoatmosphencally (Very little of the power of a DF laser
is absorbed in the atmosphere, however.) The proposed use
of these lasers is to base them in satellites in low-Earth orbit
a few hundred miles above the Earth’s surface. The attempt
will be to cover the Soviet ICBM missile fields as well as all
possible locations of submarines for launching SLBMs.

Low-Earth orbit satellites have an orbit period of

- _Aowi __2mR
T e (RRM?
where R is the radius of the Earth (6400 km) and g is the

t = 5078 s~1.5 h, (1)
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