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It sometimes happens that extraneous solutions are in-
troduced in a problem that must be explained away by
some mathematical or physical argument. A well-known
example occurs in electrostatics when solving

V2V =0
in spherical coordinates. Here ¥~ 1/r is apparently a solu-
tion. However, it is a solution only for r50, and, as is well
known, is in fact the potential due to a point charge located
at the origin,

V2(1/r) = —475(r).

No such singularity arises when attacking the problem in
Cartesian coordinates.

The purpose of this note is to show that the controversial
solutions'~> to the Schrodinger equation for the one-di-
mensional hydrogen atom fall into the category of extran-
eous solutions, similar to the above éxample. These solu-
tions do not satisfy the Schrodinger equation at the origin,
and, furthermore, given any two such solutions, # and #,

r dx ¢+ (H — EY¢| - o,

where H is the appropriate Hamiltonian and £ is its eigen-
value. Thus no measurable spectrum exists and these solu-
tions must be disregarded.

To prove this assertion, consider the one-dimensional
Schrodinger equation (m =#fi=1)

HY = EV n
with

. 1 d? A ok

= T2aE W Pt

Because of the singularity at the origin, solutions must be
obtained separately for regions x>0 and x <0 and then
matched appropriately at x = 0. The solutions® for the
even extensions are

¥, =4, |xle %M1 — A /k,2,2k |x]) (2a)
and
¥, = de = *MU( — A 7k,0,2k |x]), (2b)

where A, and 4, are normalization constants and M and U
are the regular and irregular confluent hypergeomietric
functions defined on p. 504 of Ref. 6. These solutions are
linearly dependent for the special cases, where A /k is a
positive integer. The odd extensions are given by

V4 =sgnx ¥ ,.

The wavefunction W, satisfies the boundary condition at
|x| = co only if M is a polynomial, i.e., only if A /k = n;
n =1, 2, the usual spectrum of the three-dimensional hy-
drogen atom in the case of zero angular momentum.

The wavefunction W¥,, however, automatically satisfies
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the boundary condition at |x| - 0. Moreover, it is Le-
besque square mtegrabie and continuous at x =0. It is
these “solutions” that are controversial since they apply for
all values of k; a result that implies a negative energy con-
tinuum.? Or if the potential is replaced by

¥ = lim —2
a0 x| +a’
a ground state at E= — o is obtained with the corre-

sponding eigenfunction, in the limit a—0(|k |- ) for
small x,

W, = (k)!/%e= kM, (3a)
where a and k satisfy

(1 —-A/k) ;

In2ak + —————2 = 3b

SR TR (39)

This state is not required for completeness in the expansion
of square integrable functions.? Here I'(1 4 z) = zI'(z) is
the gamma function and (d /dz)T'(z) = T"'(z).

The controversy arises because ¥, , , are not solutions of
Eq. (1). For example, the even extensions ¥, , satisfy

1 4%, A k2
—_———— . Y, = - 4
2 dixP x| 7 2 7 *)
rather than Eq. (1). To see the difference use
d? (dtx!)z d*  d’x| d
B 5
o Nax) A | e ap (>2)
with’

|x| = x sgn x and —d—sgnx =258(x)
dx

to give
_ai___ (s nx 4+ 2x8%(x) ——
PR dl 12
+2[28(x) + x6'(x)] —IT (5b)
x

where the prime denotes the derivative. Then for ¥ = ¥, ,
Eq. (1) becomes

(H— E)‘I’lz—-—2[|x|6(x)+x262(x)](k2—%-) .

y
—[25(x) + 28 (x)] Loz (6)
d|x|
Near the origin,®
W, =A.k |x[(1 -2 |x]) +0(|x[?);
A,
Vo= 22__ 10
) =170 + 0(|x|In)x);

and
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. Ak

2 =

T T —A/k)
| A I"(l—/l/k))]
1424 (2% A1 AK)
X[ + k(n M+ T e
+ 0(|x|In|x]|). @)
For ¥,, Eq. (6) becomes
(H—E)Y,= —A,k6(x) (8)
and for ¥,
Ad
H-EW,=—21%22
( W2 T(1—A/k)
, I"(l—/l/k))
44 kA2 "278) )
X[( thAY 2T T L
+21In(2k |x|)[26(x) +x6’(x)]]. 9)

Clearly, neither ¥, nor W, satisfies Eq. (1) at the origin.
However, ¥, is equivalent to a_solution of Eq. (1), since
given any two W,’s, say ¥, and ¥,

fdx vl (H—-E)¥,=0. (10)
This argument fails for W, as can be seen by examination of
Eqgs. (7) and (9),

fdx\l/; (H— E), o. (11)
A similar analysis of the odd extensions ¥, gives for the
regular function ¥,,

(H—E)¥,=0, (12)
whereas for the irregular solution W,
fwz (H~E)¥,dx— . (13)

Thus the appropriate solutions to Eq. (1) are the even and
odd extensions of the regular solution ¥, ;.

A regular solution (V/x—A4,¥' -4 as x—0) can always
be found® for singular potentials that satisfy
lim, , x*¥(|x|) -0. Application of the above analysis
shows that the even extensions of such solutions are accepta-
ble. For potentials that also satisfy lim,_q|x|¥(]x|) -0,
there exist irregular solutions ¥ —const, ¥’ -0, for x—0.
The even extensions of such solutions are also acceptable
solutions to the Schrodinger equation. On the other hand,
for lim,_o|x|¥V(|x|)-»0 the irregular solution satisfies
V' - o for x—0 as in the case of the Coulomb potential.
Thus these irregular solutions must be discarded.

The scattering solution for an incoming wave e ~*“*,x>0;
™ x<0, can be obtained for the Coulomb potential from
Eq. (2a) by replacing k by + ik,

¥ = dxe ="M [1 — (A /ik), 2, 2ikx]; x>0,
= Axe™M [1 — (A /ik),2, — 2tkx]; x>0,
which for large x becomes® -

(14)
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W — eZle/ZkA
(1 +A/ik)

(e F ikxg F i(A/k)In 2k |x|

_ r(liﬂ'/lk) ej:ibxej:i(ll/k)ln2k|x|)' (15)
I'(1FA /ik)
The reflection coefficient is
(1 +A/ik) |?
R=e| ——="1"| = 16
T'(1xAvik) (16

Thus the potential ¥ = — A /|x| divides the configuration
space into two independent halves as first noted by An-
drews.*

Note also that the bound state solutions ¥, ; for each half,
x>0 and x<0, can be recovered by a contour integration®
that encircles the poles of the continuum wavefunction [Eq.
(14)] thatforx>0areat A /ik= —n,n =1, 2,... and for
x<0areat A /ik = n.

We therefore conclude that the appropriate solutions to
the one-dimensional hydrogen atom are the even and odd
extensions of the regular functions ¥, ; and that the irregu-
lar functions ¥, , must be discarded since they neither satis-
fy the Schrédinger’s equation over the entire domain of x nor
do they give rise to a definable energy spectrum. This re-
solves the controversy since the solutions posed in Refs. 1
and 2 fall into this irregular category.

Note that Loudon’s solution [ Eq. (3)] is a solution of the
free particle Schrédinger equation

—d 2 k 2¢

2dx? 2

rather than the solution to Eq. (1). He has therefore, in this
limiting process, thrown away the effect of the irregular na-
ture of the potential. He has a result that would apply equally
well to the free particle case, i.e., abound stateat E = —
for the free particle with Eq. (3) as its eigenfunction.
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