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Fig. 3. Reflections of light inside the glass cross section.

the width of the refraction is narrower, resulting in a better

measurement of a. However, the refraction intensity is
lower, making the o measurement more difficult. There-
fore, the measurement of @ requires an alignment of the
incident beam such that the refraction from D provides the
optimal condition for determining « . The pattern of re-
fracted light depends strongly on the illuminated surfaces
of the bottle. These surfaces should be clean, free of scatter-
ing centers, and should have uniform curvature. The re-
fracted light approaches the undisturbed incident beam as
the thickness of the bottle decreases. These two light com-
ponents cannot be resolved when the thickness reaches a
critical value. Thus there is a low limit where the thickness
of a bottle can be measured with this method. This limit is
about 0.25 cm.

Another way to determine the thickness of the bottle is
to measure the separation between the points where reflec-
tions occur inside the glass. These internal reflections are
illustrated by the dotted line of Fig. 1. The length of the arc
between any two adjacent points on the outer surface can
be used to determine a. For example, the length of the arc
between A and D divided by the outer radius is equal to a.
After a is evaluated, Eq. (1) gives the thickness 7. Mea-
surements were made on the same glass bottle. The reflec-
tions of the laser beam are shown in Fig. 3. The arc length

between two adjacent reflections at the outer surface was
determined by wrapping a piece of graph paper around the
bottle. This arc length was found to be 0.73 cm and & to be
14.9°. According to Eq. (1), T was calculated to be 0.34
cm, which is in good agreement with the measurement
made by a caliper.

The optical demonstration may be more impressive
when it is conducted with a glass bottle having a narrow
neck. With a small neck bottle it appears to be impossible to
insert any measuring device into the bottle to make the
necessary measurement. However, the optical method pro-
vides the solution with ease.

The thickness measurement requires knowledge of the
index of refraction of the glass. Most ordinary glass has an
index of refraction of about 1.5. With the index of refrac-
tion taken as 1.5, the thickness measurement has been dem-
onstrated to have sufficient accuracy to be convincing.
However, there is a way to eliminate the requirement of
knowing the index of refraction of glass beforehand. For
this purpose, the incident laser beam can be rotated coun-
terclockwise around point A (Fig. 1) until light going from
A to B has an incident angle that equals the critical angle
(6.). Let the angle of rotation be ¢. Snell’s law states that
sin § =nsin(f, —a/2). Then Eq. (1) becomes
T=R[1~— 1/sin ¢]. As a result, the thickness measure-
ment no longer requires prior knowledge of the index of
refraction of the glass. However, the demonstration be-
comes more complex.
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A recent article' in this Journal derives the quantum-
mechanical solution to the problem of a particle incident
on a one-dimensional well formed by a repulsive delta-
function barrier in front of an impenetrable wall. The sta-
tionary states obtained are used to determine the relation
between scattering resonances and the time evolution (ex-
ponential decay) of states initially located entirely within
the well. Massmann notes that his results are modified only
slightly when the repulsive é barrier is replaced by an at-
tractive § well, due to the fact that a delta-function poten-
tial of either sign acts as a barrier.
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It is interesting to consider further the case of a quan-
tum-mechanical particle in the latter potential that is de-
picted in Fig. 1. The time-independent Schrédinger equa-
tion

hz d 2
(-EL s wp—z—Epm =0 (O
2u dx
must be solved with the boundary condition #(0) = 0. Use
of the continuity equation®

Y1 (x0) — Y (xo) = — (Zﬂ/ﬁz) Wo(xo) (2)
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Fig. 1. Diagram of the potential ¥(x) = — |W;|6(x — x, ). The attrac-
tive delta-function potential at x = x, acts as a barrier that, together with
the impenetrable wall at x = 0, creates a well that supports scattering
resonant energy states.

to match the solutions for regions I and II at the boundary
X = X, gives
by () = 2 )meisk[sin(kx +8:), x>x,
e (ﬁ Ay sin(kx), 0<x<xo,
where k = (2uE /#)"/? and the phase shift §, and ampli-
tude 4, are

(3)

tan(kx,) ) 4)
1 + (a/kxy)tan(kx,)

S = —kxo+ arctan(

and
A, = {sin®(kx,) + cos?(kx,)

X [1+ (a/kxo)tan(kxo) 1}~ 1

Xsign[1 + (a/kxy)tan(kx,)]. (5)
The dimensionless constant « is defined by
a = 2ux,Wo/# : (6)

and takes on the sign of W, is negative (positive) for an
attractive (repulsive) delta-function potential. These ex-
pressions are just those derived by Massmanp, except that
A, will now be negatlve when (a/kxy)tan(kx,) < — 1.

The phase shift §, is plotted as a function of kx, in Fig. 2
for various values of @. The steplike behavior arises from
the requirement that the phase function be continuous
when the energy of the scattering particle passes through a
resonance. The positions and widths of the scattering re-
sonances due to a potential with a particular a value can
then be estimated qualitatively by inspection, the peaks of
the resonances corresponding to the points of greatest slope
on the curve and their widths to the value of the slope at
those points. It is evident from the figure that the reson-
ances become sharper (narrower) and approach the bound
state*energies for a particle in an infinite square well of
width x,(k,x, = nm and E, = #k2/2u) as |a| - «, al-
though that limit is approached from above for the case
a— — oo and from below for the case @ — + «. Not sur-
prisingly, the phase shift 8, is negative for a >0, which
reflects the simple fact that anincident particle sees a repul-
sive potential, while 8, is positive for a <0, corresponding
to scattering from an attractive potential.
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The behavior of the phase shift in the limit of vanishing
particle energy is very surprising, however. Equation (4)
and Fig. 2 give

0, a> —1,
lim 6, = {7/2, a= —1, (7N
k-0

T, a< —1,

which, according to Levinson’s Theorem,” indicates the
existence of a zero-energy resonance belonging to the po-
tential with @ = — 1, and the existence of a single bound
state (with E <0) belonging to the potentials with
a< — 1.

The occurrence of this resonant state and bound state
may be demonstrated explicitly by determining the poles of
the scattering matrix. Poles lying on the imaginary axis of
the complex & plane correspond to bound or virtual states,
while those lying off the imaginary axis correspond to reso-
nant states. It is then a straightforward matter to calculate
the energies of the bound and resonant states for all values
of a.

The S matrix, written as a function of the phase shift 5, ,
is

S, =e* = (1+itand,)/(1 —itané,), (8)

which, by substituting the expression for §, from Eq. (4),
can be seen to have poles & that satisfy

1 + (a/kxg)tan(kx,) + [1 + (ia/kx,) Jtan®(kx,) = O.
9
Replacing & by /K and rearranging terms gives

a = — Kx,[1 + tanh(KXx,) ] /tanh(KXx,). (10)

Evidently, the pole in the complex & plane which gives rise
to the bound state starts out at — o on the negatlve imagi-
nary k axis for @ = 0 and reaches the origin at @ = — 1.

For potential strengths commensurate with — 1 <a<0,
then, this pole corresponds to a virtual state, Fora < — 1,
the pole is on the positive imaginary axis and therefore
corresponds to a bound state with energy £ = — #°K %/2u.

The pole at the origin fora = — 1 represents a zero-energy
3 — T T — T T T —
%} //
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Fig. 2. Phase shift §, plotted as a function of kx, for @ = — 20 (short
dash-long dashed curve), — 2 (dotted curve), — 1 (dot-dashed curve),
~ 0.5 (solid curve), and 20 (dashed curve). As the “strength” |a| of the
delta-function potential increases, the resonance structures for the two
cases a > 0 and a < 0 become essentially indistinguishable. The behavior
of 8, as kx,~» 0 signifies the existence of a bound state for potentials with
a < — 1, a zero-energy resonance for potentials with @ = — 1, a virtual
state for potentials with — 1 <@<0, and no bound or virtual state for
potentials with a > 0.
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Fig. 3. Resonance poles of the scattering matrix, Eq. (8). The poles are
constrained to lic on the curves depicted here and approach
(Rxy,Kxy) = (nm,0) as Ja| — o (as the “strength” of the delta-function
potential increases). The curves for a < 0 are bounded by Rx, = n7 and
(n + 1), and asymptotically approach Rx, = nmas a— — 0; the curves
for @ >0 are bounded by Rx,= (n — 1) and nw, and asymptotically
approach Rx, = (n —})masa— + 0. Resonance poles for several values
of a are plotted to illustrate these relationships: A a = — |,Ba= —35,
Q®a=—-20,Aa=1,0a=50a=20.

resonance rather than a zero-energy bound state because
the corresponding wavefunction is not normalizable while
the zero-energy cross section diverges. The right-hand side
of Eq. (10) can never be greater than Zero, so no bound (or
virtual) state is possible for @ > 0. (When the impenetrable
wall at the origin is removed and a second attractive delta-
function potential is placed at x = — x,, two poles appear,
one corresponding to an odd parity bound state and behav-
ing identically to the pole discussed here as «a is varied, and
the other corresponding to an even parity bound state and
starting at the origin for @ = 0 and moving to infinity as
a— — . Thereis thus one bound state for — I<a <0and
two bound states fora < — 1.*)

Resonant states are represented by the zeros of Eq. (9)
when k is replaced by R + iK. The poles (R,K) must then
satisfy the two equations

_ Rxy[1 + tan®*(Rx,) ] [1 + tanh(Kx,)]

a= (11a)
tan(Rx,) [1 — tanh(Kx,) ]
and
e _ Kxo[1 4+ tan®(Rx,)1{1 + tanh(Kx,)] . (11b)

tanh(Kx,) + tan’(Rx,)
Equating the right-hand sides gives the set of curves
Kx,[1 — tanh(KXx,) ]

— [Rx,/tan(Rx,) jtanh (Kxy) — Rxgtan(Rx,) =0,
(12)

upon which all the resonance poles must lie. Those curves
closest to the imaginary axis are plotted in Fig. 3 together
with several resonance poles calculated from Eqs. (11a)
and (11b). The poles approach (Rx,,Kx,) = (nw,0) from
higher and lower energies as ¢ — — o and + oo, respec-
tively, in accord with the behavior of the phase shifts in Fig.
2, and asymptotically approach (Rxo,Kx,) = (n7, — )
and [(n — )7, — o] asa— — 0and + 0. Each pole rep-
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Fig. 4. The square modulus |4, |* of the amplitude of the wavefunction in
the well 0<x<x, plotted as a function of kx, for @ = — 20 (short dash-
long dashed curve), —2 (dot-dashed curve), — 1 (solid curve), O
(dashed curve), and 20 (dotted curve). The probability for finding a low-
energy particle inside the well is greatly enhanced for potentials with «
near — 1, due to the existence of a nearby bound or virtual state. Poten-
tials with @ = — 20 and 20 give rise to standard resonance structures. As
|@| ~ o0, structures for a <0 and corresponding structures for o > 0 in-
creasingly overlap, the resonances in the former case approaching
kxo = nar from higher energies and the resonances in the latter case ap-
proaching kx, = n# from lower energies.

resents a  resonance centered at  energy
E= (#/21)(R? — K?) with width I'/2 = # R |K | /..
It is clear from Figs. 2 and 3 that the main effect on
scattering states of the replacement of the repulsive delta-
function barrier by an attractive delta-function potential is
simply to shift the positions of the resonances. For a low-
energy particle incident on a § well with strength a near
— 1, however, the presence of the nearby bound or virtual
state will lead to a greatly enhanced probability for finding
the wavefunction within the well. This is demonstrated in
Fig. 4, where the square of the amplitude A4, of the wave-
function in the well is plotted as a function of kx, for
a= —20, —2, — 1,0, and 20. The quantity 4 2 can be
regarded as the ratio of the probability for finding the parti-
cle with wavefunction ¥, in the well to the probability for
finding the particle in the interval 0<x<x, in the absence of
the delta-function potential (a = 0).

ACKNOWLEDGMENT

This work was supported in part by the United States
Department of Energy.

'H. Massmann, Am. J. Phys. 53, 679 (1985).

In this formmulation, the delta-function potential essentially represents a
boundary, which provides a simplification in scattering problems that
has beeh exploited for pedagogical purposes by various textbook authors,
for example D. ter Haar, Selected Problems in Quantum Mechanics
(Academic, New York, 1964); and S. Fliigge, Practical Quantum Me-
chanics (Springer, New York, 1974).

3See, for example, F. Calogero, Variable Phase Approach to Potential Scat-
tering (Academic, New York, 1967), Chap. 22.

4C. L. Hammer, T. A. Weber, and V. S. Zidell, Am. J. Phys. 45, 933
(1977).

Notes and Discussions 280



