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New York, 1965).
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It is well known that the harmonic oscillator potential can be solved by using raising and lowering
operators. This operator method can be generalized with the help of supersymmetry and the
concept of “shape-invariant” potentials. This generalization allows one to calculate the energy
eigenvalues and eigenfunctions of essentially all known exactly solvable potentials in a simple and

elegant manner.

1. INTRODUCTION

"Most textbooks on nonrelativistic quantum mechanics
show how the harmonic oscillator potential can be elegant-
ly solved by the raising and lowering operator method.!
The purpose of this article is to describe a generalization of
the operator method? that can be used to handle many
more potentials of physical interest. The generalization is
based on two main concepts: supersymmetry and shape
invariant potentials. For quantum-mechanical purposes,
the main implication of supersymmetry is simply stated.
Given any potential ¥_(x), supersymmetry allows one to
construct a partner potential ¥, (x) with the same energy
eigenvalues (except for the ground state).>* Furthermore,
if V_(x) and V_ (x) have similar shapes, they are said to
be “shape invariant.” This concept was introduced three
years ago by Gendenshtein.’ He calculated the energy
eigenvalue spectrum and pointed out that essentially all
known solvable potentials® (Coulomb, harmonic oscilla-
tor, Morse, Eckart, Poschl-Teller, etc.) are shape invar-
iant.” This work has been extended by us ? to a calculation
of all the bound state wavefunctions from the ground state
in a manner analogous to the harmonic oscillator operator
method.

The whole development is very elegant, appealing, and
yet rather simple, so that any student of quantum mechan-
ics should be able to understand and appreciate it. Indeed,
we strongly feel that the material presented here can be
profitably included in future quantum mechanics courses
and textbooks. Accordingly, we have kept this article at a
pedagogical level and made it as self-contained as possible.
In Sec. I1, we give a quick review of the standard operator
method for solving the one-dimensional simple harmonic
oscillator potential in nonrelativistic quantum mechanics.
Section III contains a summary of the main ideas of super-
symmetric quantum mechanics. Section IV is the heart of
this article. In it, we precisely define the notion of shape
invariant potentials, and then show how one can simply
obtain the energy eigenvalues [Eq. (36)] and eigenfunc-
tions [ Egs. (47) and (48) ] by a generalized operator meth-
od. A useful table of all known shape-invariant potentials
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and their eigenstates is given. A discussion of related prob-
lems and concluding remarks are contained in Sec. V.

II. OPERATOR METHOD FOR THE HARMONIC
OSCILLATOR

The one-dimensional harmonic oscillator Hamiltonian
is given by

(D

In terms of the raising and lowering operators ¢* and a
defined by

172 172
- )L )

2mow dx 2 #i
h )1/2 d l (zmw)l/Z
at= —|—)] —+—[== . 2
(2mw dx + 2 # * 2
the Hamiltonian takes the form
H=(a%a+)}) fw. (3)

The following commutation relations are easily derived.
[aa*)1=1, [aH]=atw, [a"H]= —a*#w.
(4)

The utility of operators a and a™ comes from their ability
to gencrate new eigenstates from a given one. In particular,
if ¢, is an eigenfunction of H with eigenvalue E,, , then ay,
and a*y, are also eigenfunctions with eigenvalues
E, — #iw and E, + #iw, respectively. Since the operator
a*a in H is positive semidefinite, all eigenvalues E, >ifiw.
Therefore, the successive lowering of eigenstates by the op-
erator ¢ must eventually stop at the ground-state wave-
function ¥, by requiring

ayy(x) =0. (5
Operating with #wa™ yields
fiwa*ayy(x) = (H — iw) i (x) =0, (6)

which corresponds to a ground-state energy E,= lfiw.
Also, using the definition of the lowering operator a [Eq.
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(2) ] makes Eq. (5) a simple differential equation to solve.
This gives the normalized ground-state wavefunction

Yo(x) = (mw/mh)"* exp[ — (mw/2#)x?]. (7
All higher eigenstates are generated by repeated applica-
tions of a*. The complete energy spectrum is

E,=(n+)w, n=012,., (8)
with corresponding normalized eigenfunctions

¥, (x) = [(@")"//nl] (). (9

The operator method is clearly fast, and it bypasses the
lengthy solution of the Schrédinger differential equation in
terms of Hermite polynomials. Of course, if desired, these
explicit eigenfunctions can also be obtained from Egs. (9)
and (2).!

IT1, SUPERSYMMETRIC QUANTUM
MECHANICS

Assume that one has a potential V_ (x) whose ground-
state wavefunction ¥§ =’ (x) =1,(x) is known, and whose

ground-state energy has been adjusted so that E{~’ = 0.2
Then the Schrédinger equation for the ground state is
# d?
H g =(-1"% Ly =0, 10
Yo ( s+ (x))% (10)
and consequently,
2 2 ”
H_:h—( d +__-). (1)
2m dx* i,

Define the operators

2m dx
A=_i_(_d___ﬁ). (12)
J2m dx Yo
This gives
# d?
A+A=H__, AA+EH+= —‘2;‘_1_5"}' V+(x)9
(13)
where
V_*_(x):V_(x)__ﬁz__d_(.i)
Yo
= —V_(x)+ 2 (%) (14)
Yo

The potentials ¥, and V_ are called supersymmetric
partner potentials. As we shall shortly show, they have the
same energy levels (except for E {~’ = 0). Also note from
Eq. (12) that Ay, =0.

In supersymmetric quantum mechanics,* it is customary
to use the superpotential #(x) rather than the ground-
state eigenfunction ¥, of H_. Here, W(x) and ¢, are relat-
ed by

_ (%
o= (%),

ho(x) = exp( - ‘[—ﬁ_"i-J‘ W(x)dx) .

In terms of the superpotential W (x), the operators A and
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A are given by

av= -1 4w,

Im dx

d (16)
A ————+ Wi(x).

J2m dx
Also, the supersymmetric partner potentials ¥, (x) are
given by

#i a'W

V., (x)=Wx)+——W'(x); W'(x)=—r

= V2m dx
17

Note that W ?(x) is the average of the potentials ¥ (x)
and V_(x), whereas W'(x) is proportional to the commu-
tatorof 4 and 4 +°:

VL) +V_(0)]=W(x);

(4,4 +] = QAN2Zm)W' (x).

Let .’ and ¢\*’ denote the eigenfunctions of the
Hamiltonians H_ and H , respectively, with eigenvalues
E {7 and E{*’. The integer n = 0,1,2,3,..., denotes the
number of nodes in the wavefunction. We will now show
that the potentials ¥, and V__ have the same energy spec-
trum, except that the ground-state energy E, = O of V'_ has
no corresponding level for ¥, . More specifically, if ¢~ is
any eigenfunction of H_ with eigenvalue E|~’, then
AY{ 7 is an eigenfunction of H_, with the same eigenvalue.
The proof is straightforward.

H, (4¢,7)
=AA (AP ) =AH > =E{7 (4y) 7).
(19)
Similarly, if ¢{*’ is an eigenfunction of H_ with eigen-
value E {*’, then 4 "¢ "’ is an eigenfunction of H_ with
the same eigenvalue:
H_ (A +¢’(1 + ))
=A +A(A +¢'('+)) =A +H+¢f,+)
=E{7(A4 "), (20)
From Egs. (19) and (20), it is clear that the eigenstates of
H_ are simply related to those of H _:
E(+)_E(—) (21)

+ 1
Yt = 249 70 (n=0,1,2,3,..). (22)

If the eigenfunction ¥’ of H_ is normalized, then the
wavefunction ¢{*’ of H in Eq. (22) is also normalized.
Note that the operator 4 not only converts an eigenfunc-
tion of H_ into an eigenfunction of H , with the same ener-
gy, but it also destroys a node [¢{ ] has (7 + 1) nodes,

whereas 1 has n]. Similarly, one has
(G =[ELT]724 Y (n=0,1,2,3,..).(23)

The operator 4  creates a node and converts an eigenfunc-
tion of H , into an eigenfunction of H _ with the same ener-

(18)

[E(—)

n+1

In Fig. 1(a), we show the energy spectra of two super-
symmetric partner potentials ¥_ and ¥V, . The roles played
by the operators A and A * are indicated: They connect
states of the same energy for two different (supersymme-
tric partner) potentials. For comparison, in Fig. 1(b), we
show the one-dimensional harmonic oscillator spectrum.

Dutt, Khare, and Sukhatme 164



A E,
=) N =+
513 — =2 - c
A s
E(—) ,—(“‘) E
= 2
2 4 o
Efr) Eg’-) — E1
(~)
B E,
V.(x) V*(X) V= muzxz/z
(a) (b)

Fig. 1. (a) The eigenvalue spectra of the supersymmetric partner poten-
tials ¥_ (x) and ¥ (x). The action of the operators 4 and 4 * is indicat-
ed. (b) The equally spaced energy levels of the one-dimensional simple
harmonic oscillator. The action of the raising and lowering operators a*
and a is shown.

The roles played by the operators @ and @™ are indicated:
They connect states of different energies for the same (har-
monic oscillator) potential. ' '

An explicit example will clarify the ideas presented in
this section. Consider a particle of mass m in an infinite
square well of width L.

(0<x<L),

0
V(x)={oo (—ow<x<0, x>L). (24)

The eigenstates are well known':
_(n+1)h?
" 8mL?

¥, = (1)1/2 sin {2+ D7x
" L L

where n = 0,1,2,3,..., is the number of nodes in the wave-
function in the interval 0 <x < L. Clearly, the shifted po-
tential

V_(x)=V(x) —h*8mL"? (26)

will have a ground-state energy E { ~> = 0. The eigenstates
of V_(x) are

(25)
(0<x<L),

E(— _n(n+2)r°
* 8mL?
P = (_2_)1/2 sin (n+ Dmx (0<x<L) @0
" L L e
From Eq. (15), the superpotential is
i o7 X '
W(x)= ————cot (-——) (0<x<L). (28)

Using either Eq. (14) or (17), it is now easy to find the
supersymmetric partner potential ¥ (x) of the infinite
square well V_(x).

V.(x)=(h?*8mL?) [2csc®*(mx/L) — 1]. 29)

The wavefunctions of ¥ (x) are obtained from Egs. (22)
and (27).

0| L T o ) sy 2+ D

dx L L
< (n+ l)cos(n—+2).ix —_ Sing.+_1)_ﬂ._x/sin7_x_
L L L
(30)
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V=0 V= cosec?x
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)

4/2 | |
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| ]
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sin x | |
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e ]

0 0 T 0 T
X X

Fig. 2. The low-lying energy eigenstates of the infinite square well of width
« and its supersymmetric partner potential csc® x. The units used are
fi=m=1.

In particular,

(+) o «in2f X (+) o (_ﬂi) (@_)

Y51’ « sin (L ), ¥ sin| 7 sin 17 35
Thus we have obtained the nice result that the familiar
infinite square well ¥(x) [Eq. (24) ] and the potential (4 2/
4mL?) csc* (wx/L) have exactly the same energy levels
except for the ground state. These potentials and their low-
lying wavefunctions are shown in Fig. 2, where the well
width has been chosentobe L =7 andfi=m = 1.

IV. SHAPE INVARIANT POTENTIALS AND
THEIR EIGENSTATES

There are a number of analytically solvable problems in
nonrelativistic quantum mechanics for which all the ener-
gy eigenvalues and eigenfunctions are explicitly known.®
Some examples are the Coulomb, harmonic oscillator,
Morse, Eckart, and Poschl-Teller potentials. The question
naturally arises as to why these potentials are solvable.
What is the underlying symmetry property, if any? No uni-
fied answer was known until about 3 years ago, when in a
largely unnoticed paper, Gendenshtein® pointed out that
all these potentials have the property of “shape invar-
iance.”

Let us now explain precisely what one means by shape
invariant potentials. If the pair of supersymmetric partner
potentials ¥, (x) defined by Eq. (17) are similar in shape
and differ only in the parameters that appear in them, then
they are said to be shape invariant. More specifically, if
V_(x;a,) is any potential, its supersymmetric partner
V. (x;a,) must satisfy the requirement®

Vi (x;a0) = V_(x;a,) + R(a,), (32)

where a, is a set of parameters, a; is a function of a,
[a, = f(a,) say], and the remainder R (q,) is independent
of x.

We now show that the eigenstates of shape invariant po-
tentials can be easily obtained. To that purpose, construct a
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series of Hamiltonians H s = 0,1,2,..., where H " =H _,
H(I)EH

® _ ﬁZ d2
H® = ——+V_(xa,) + ZR(ak), (33)

 2moax? K=1

where a, = f°(a,), i.e., the function fapplied s times. Let
us compare the spectrum of H  with that of H“+ 1, In
view of Egs. (32) and (33), we have

ﬁZ d 2 s+ 1
———+V_(xa, R(a

o 2o ( +1)-|-k§=:l (ay)

hz d2 s

= ———+4+V, (xa,) + R(a,). (34
2m dx2 M kg1 ( k) ( )

Comparing Egs. (33) and (34), we see that H and
H“*Y are supersymmetric partner Hamiltonians and
hence have identical bound-state energy spectra except for
the lowest level of H > whose energy is

EQ = z R(a,). (35)
k=1

This follows from Eq. (33) and the fact that E{ =’ = 0.On
going back from H ' to H“~ ", we would eventually
reachH V(= H_ )and H”( = H_), whose ground-state
energy is zero and its nth energy level being coincident with
the ground state of Hamiltonian H ™ (n=1,2,3,...).
Hence, the complete energy spectrum of H_ is given by’

i R(ay), E§=0. (36)

k=1

H(S+1) —

E (=)
As a simple, physically interesting example, let us consider
the potential

V(x) = — V,sech® Bx. (37)

Potentials of this shape can be generated from the superpo-
tential

W(x) =2 AtanhBx, A>O0. (38)

In fact, using Eq. (17), the supersymmetric partner poten-
tials are

V_(x;4) = A% — A(A + B#i/\[2m )sech® Bx;

V. (x;d) =A? — A(A — B#/[2m)sech® Bx.
Clearly, one can write

V. (xA) = V_(x:4 — Bh/\2m)

+A4%— (4 —ph/\2m)?, (40)

which is precisely the requirement for shape invariance. In
fact, comparing Eqgs. (40) and (32) yields

a, =fla;) = A — BA/\2m;

R(a,)) =a} —at.

(39)

=A:
4o > (41)

Clearly, successive Hamiltonians in the sequence H ©
(s=0,1,2,...) will have parameters a, =f"(a,)
= A — sB#/\2m. Therefore, the bound-state energies of
the potential V_(x;4) =V _(x;a,) are

z R(a,) = z (ak—l - i)

K=1 k=1
=a —a =A%~ (4 — npH/\2m)> (42)

The ground-state wavefunction of V_(x;a,) is calculated
from Eq. (15):

¥§ 7’ (x;a,) « (sech Bx)%;

E(—)

s=\2mA /#B. (43)
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The requirement A > 0 [ that we have assumed in Eq. (38) ]
guarantees that 1§~ (x;a,) is normalizable.

The energy levels E, of the potential — ¥V, sech? fx
[Eq. (37)] can be obtained from those of ¥_ (x;a,) [Eq.
(39)] by subtracting 4 * from E | > and identifying

Vo=A(A4 + BH/2m). (44)
Solving for 4 and requiring 4 > 0 gives

2
A=—-——%—+-1— —M+4VO. (45)
Therefore, the energy levels of the potential

V(x) = — V,sech® Bx are
E,=E{ —4>

)

ﬁzﬁz( smV, \*
= — — (142 1 9
2 ( n) + l, B ’ ,  (46)

which is well known to be the correct answer.'®

In Table I, we give a list of all known shape invariant
potentials ¥'_ (x;a,) and their bound-state energy spectra
E {7, For each case, we also give the superpotential W(x)
and values of the parameters ay,a,, and the remainder
R(a,). All the familiar analytically solvable potentials®’
correspond to special values of the parameters in one of the
cases given in Table 1.

We now show that for any shape invariant potential
V_(x;a,), the bound-state wavefunctions ¢~ (x;a,) can
be easily constructed from the ground-state wavefunction
#$ 7 (x;a,) [which is known from the superpotential via
Eq. (15)]. This is possible since the operators 4 and A *
link up the eigenfunctions of the same energy for supersym-
metric partner Hamiltonians H, and H_. Let us start
from the Hamiltonian H as given by Eq. (33). Its
ground-state eigenfunction is given by ¢’ (x;a, ). On go-
ingfromH ©to H*~VtoHY( =H,)and HO(=H_)
and using Eq. (23) we then find that the nth state unnor-
malized energy eigenfunction ¢ ~’(x;a,) for the original
Hamiltonian H _ (x;a,) is given by

YT (x50,) <A T (x;00)4 T (x3ay)

At (xa, Y5 (xa,), (47)

which is clearly a generalization of the operator method of
constructing the energy eigenfunctions for the harmonic
oscillator problem discussed in Sec. II. In fact it is now
clear why in the oscillator problem the operators ¢ and a
can be interpreted as energy raising and lowering opera-
tors. The point is that the oscillator potential is shape invar-
iant with @, = a; = a, = a,, = o so that the ground-state
eigenfunctions of the class of Hamiltonians H
(s =0,1,2,...) are all the same. In this case, Eq. (47) re-
duces to Eq. (9), since the operator 4 * defined in Eq. (16)
becomes proportional to the raising operator a* of Eq. (2).
In practice, if one wants explicit expressions for the
wavefunctions, it is simpler to use the result

P (xag) <A T (x580) P (x3a,), (48)

rather than the equivalent Eq. (47). Equation (48) follows
from Eq. (23) when one notes that for shape-invariant po-
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Table I. All known shape invariant potentials and their properties are given. Unless otherwise specified, the range of these potentials is — oo <X < o0,

0<7r< .
Name of Superpotential Potential Eigenvalues Gmund-stfate o
potential W(x) V_(xa,) {a,} {a,} R(a;) E(™ wavefunction ¢§
(e ’
i N AR ey me 2.k
2oL L . . ol 2
oscillator 2 fi m o
2
Three- 1 2p I+ DH# B
— fo— me
dimensional ; wr — Ut DA 2 me 2mP i I+1 2Hw 2nfiw [ 'exp( iy )
oscillator VImr (4 pho
m & & I+ H# me* t me* 1
TR 7 T # e+ 2#ldr1e " mer
Coulomb o . ! I+1 ) ! e~ TR
oo S
T mr W+ F (@ + 1) (4117
2 2,— 2ax
B e afi A A il a} —a} A? (A naf )2 cxp[ im (Ax+£e”"")]
Morse A—~ Be™ ™ ( ) . —-————— 2 _ @ _ _ _y
—2B|A+ e 2m Zm # a
Wim
Aot _
AZ+(BZ—A2——)scch2ax R (sech ax) Y24/
Atanh ax m 4 4 i B i A2 ( nat ) 22mB
pe— 0 & - -
J V2 Xex [ - tan“(e"")]
+ Bsech ax +B(2A+ af )sechaxtanhax 2m m P pr
2m
nah \?
B? 2 _ 2 Ar- (A - ) VTR A st
A2+F+23mhax ok a; —a; V2m (sech ax)
Rosen- B
Atanh ax + — 4 e J1 1 o ! 1 ( JZme)
B2 — — B _ -
Morse A y (A + _aﬁ—) sech? ax 2m + e + VE ( p )2 X expl i
2m Tim
Aah
Acothar Az+(BZ+A2+ - )cschz ar P ok L, .- (A naki )2 (sinh ar) Tam B
— Beschar r— % —a T "1 2 coch qp)iTRBraR
f J2 (1 + cosh ar)*
(A< B) - B(ZA + —ai)coth arcsch ar Zm m
2m
nak \?
2 B’ 2 2 47— ( ) H ImA fah
" B A*+ = 2B coth ar ok a, —ay v2m (sinh ar)
—Acothar+ —
4 A+ 1t 1 1 JImB
Eckart 4 ofi R o +B - + B2 -~ 5 Xexp(— ” r)
(B>A4?) 4+ A4~ csch? ar a & A (A + nah ) #A
V2m N
Aak
2
— Acotax _,42+(A2+B = )csczax ) - o (A+ nafi )z P (sin ax)VTm A~ B/
+ Bcscax A4 +— ay —a -
N \ 2 1 vImB/ak
(0<ax<m; 4> B) —B(ZA — )cot ax csc ax 2m m (1 + cos ax)
2m
- B)?
o of (A 2 WA\ f 2naky?
Piischi A tan ax +4 (A - )secz ax . m (A +B+ ___) (A 4+ B+ ) (sin ax) ¥ 8/a8
— Bcot ax V2m (4,8) o Jyim 2m X (cos ax)VA s
ax)iem
Tellr 1 (0<ax<r/2) ah Bt—=)  —w+8y ~ By
+B|B- csc? ax JIm
J2m
A—B)?
Aunhar - o ( - sy “4-B? _
Péschl- —A (A + )s::ach2 ar m e \2 e\ (sinh ar)TB/an
— Bcothar 2m (4,B) o —(A—B— ) __( g 2 ) —(——W
Teller I (B<A) s (3 o )CSChz w B+ - ) Tm 2m cosh ar
- V2m
2m
tentials

¢r(1+ )(X;ao) = ¢£,_ )(x;al)-

(49)

Repeated application of Eq. (48) for n =0,1,2,3,...,
gives all the eigenfunctions. The procedure for successively
obtaining higher-energy eigenfunctions stops if any wave-
function is not normalizable. Of course, this corresponds to

Note that for 4 * (x;a,) in Eq. (48), one can either use
Eq. (16) in terms of the superpotential #(x) or alterna-
tively use Eq. (12) in terms of the ground-state wavefunc-
tion Yo=v¢§ "’ (x;a,). If the latter choice is made, one has
yet another useful expression for the eigenfunctions.

1

¥5 (x80) 077“;— [dot ™ (x5a,) ]. (50)

the case, where a potential can only hold a finite number of (0
bound states.

167
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Again, as an illustration, we compute the low-lying
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wavefunctions of the potential — ¥, sech” Bx [Eq. (37)].
The ground-state wavefunction ¢~ ’(x;a,) was already
computed [Eq. (43)]. The first excited eigenfunction is

P70 (x5a0) <A T (x;a0) 005 (x3a,)
= ( — -—ﬁ—i +A4 tanhﬂx)(sechﬁx)" !
V2m dx
o« tanh Bx(sech fx)* . (51)
Similarly, the second excited state wavefunction is

¢:S— (x;a0) < A (xa0)¢ )(x;al)

i d
= ———+Atanhﬁ’x)
( v2m dx

X tanh Bx(sech Bx)* 2

« [ — 1+ (25 — tanh? Bx](sech Bx)* 2
(52)

These results agree with the known analytic solutions.'®
For any given value of s, the number of bound states is the
smallest integer greater than s. The ground-state wavefunc-
tions for all known shape invariant potentials are also given
in Table I.

V. CONCLUSIONS

The ideas of supersymmetric quantum mechanics have
many applications. Among these have been the study of
atomic systems,'® evaluation of the eigenvalues of a bista-
ble potential,'! improvement of large N expansions,'? and
development of a more accurate WKB approximation.>'?
In this article we have focused on the problem of analytical-
ly solvable potentials. We have shown that the operator
method of solvirig the harmonic oscillator can be general-
ized to all shape invariant potentials—a class that includes
many solvable problems of physical interest.” Table I con-
tains a list of all known shape invariant potentials and
properties of their eigenstates. It should be noted that al-
though the terminology and ideas are quite different, the
techniques of supersymmetry when applied to quantum
mecharics are essentially equivalent to the method of fac-
torization of the Hamiltonian.? Indeed, the mathématical
condition necessary for the method of factorization to
work corresponds to the physical condition of shape invar-
iance [Eq. (32)] of supersymmetric partner potentials.
Basically, both methods are special cases of an old proce-
dure developed by Darboux for handling second-order lin-
ear differential equations.'# It would be interesting to know
if more solutions of the shape invariance condition exist.”
In any case, it is clear that supersymmetry and shape invar-
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iance give us a simple, elegant, deeper understanding of
analytically solvable potentials.
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