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Time-dependént tunneling through thin barriers: A simple analytical solution
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Analytical solutions for the time-dependent tunneling of wave trains and wave packets through
delta-function barriers are presented. Tunneling currents and density distributions are calculated
with no approximations. A standby mechanism is demonstrated: The particle “waits” some time
in front of the barrier before it tunnels through the barrier.

I. INTRODUCTION

One of the most difficult tasks in expounding on quan-
tum processes is the phenomenon of potential-barrier pene-
tration. This article presents exact analytical solutions of
the tunneling problem that are new and can be used in a
course on quantum mechanics. The level of presentation is
fairly elementary: Apart from a basic knowledge of La-
place transforms (for deriving the results), only some ex-
perience with error functions (for evaluating the results) is
needed. ‘

Rigorous analytical solutions of time-dependent prob-
lems can lead to a better understanding of the complicated
quantum dynamics. In the context of our problem we
should mention two examples of a quantal time evolution:
tunneling in a double-well potential' and the delta-shell
model for alpha decay.? In this article we add a third exam-
ple: tunneling of wave packets and semi-infinite plane
waves through delta-function barriers. If one is not inter-
ested in the long-time behavior, then the motion of any
particular wave packet can be determined by integrating
the Schrédinger equation numerically. In many articles™*
and books®>~” computer calculations for the motion of wave
packets are described in detail. (It is impossible to give
reference to all publications relevant for the tunneling
problem.) We should, however, keep in tmind that analyti-
cal and numerical methods do not compete with each oth-
er, rather they complement each other.

The dynamics of the tunneling process depends on the
initial preparation of the particle’s wavefunction. Another
parameter is the shape of the barrier. For thick barriers one
has to worry®® about the time a particle spends in the clas-
sically forbidden tunneling region. For thin barriers the
traversal time is negligible. Therefore, one would expect a
negligible time delay when a particle tunnels through such
a barrier. We shall, however, demonstrate that a particle
with a well-defined energy must “wait” in front of the bar-
rier.

In Sec. II the delta-function propagator is derived. Sec-
tion III clarifies the propagator’s mathematical structure
by relating it to the time-evolution problem of a free semi-
infinite wave. Such a wave packet contains one parameter,
the momentum of the particle, and it describes a particle
that is initially confined to one of the two half-spaces x SO.
In Sec. III we also derive the time evolution of a long wave
train passing through a delta-function barrier.

For a more general class of localized wave packets, ana-
Iytic expressions for the tunneling process are derived in
Sec. I'V. Some examples of the theory are presented in Sec.
V. An attempt to explain the results follows in Sec. VI.
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I1. DELTA-FUNCTION PROPAGATOR

In this section we derive a simple expression for the time-
dependent propagator of a particle moving in a one-dimen-
sional delta-function potential, located at x = £. We want
to solve the time-dependent Schrodinger equation

_ [#d, + (#/2m)3% J¥(x,0) = V(x)P(x,0), (1
with
Vix) =Vd(x — £). (2)

In our problem ¥, > 0 is assumed, but the results are also
valid for ¥, <0. If, at some initial time ¢#,, the particle’s
wavefunction is ¢¥(x,z,), then its wavefunction at a later
time ¢ is given'®!! by

Y(x,t) = f dx’' K(x,t |x',t)¥(x',ty), 3

where K (x,t |x',t ') isthe retarded propagator that obeys the
integral equation'?

K(x,t|x't"
. 13 -]
=Ko(x,t |x',t") — %f dt” f dx" Ky(x,t|x",t")
t’ — o

XV (x")K(x",t"|x',t"). (4)
In Eq. (4) we introduced the free-particle propagator
m 172
Ko(xt |x't") = (——————)
2miti(t —t')
. y 2
im(x —x') ) . 5)
2f(t—1")

Since the particle is acted on by a time-independent po-
tential, the propagator K depends on ¢ — ¢ only. Without
loss of generality we choose t, = ¢’ = 0, and we introduce
the shorthand notation

Uy(x — x';t) = Ky(x,t |x',0),

U(xx';t) = K(x,t|x',0). (6)
Combining Egs. (2), (4), and (6) we obtain the integral
equation

X exp (

U(x,x';t) = Up(x — x"5t) — —é Vof dt”
0

X Ug(x — &t — t " YUEX ). %)

In order to solve for U(x,x';t) we shail Laplace transform
Eq. (7) with respect to ¢. Defining

() ==Z{f(t)}=f°° dte (1), (8)
0
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and using the convolution (faltung) theorem:

J[J dr fi(t — T)fz(T)] =Fi(O)F(s), 9
0
we readily calculate the Laplace transform of U at x = &:

1+ (iVo/#) Up(035)
The Laplace transform of the free-particle propagator
can be determined from Egs. (5), (6), and (8). The result

1S
~ m 172 [ (2mS)1/2 ]
Uy(zs) = (2~ — (=) 1z
0(z35) (2%) cxP a)

The Laplace transform of Eq. (7) can therefore be written
in the form

(11)

f/(x,x’,s) = ﬁo(x —x'5) — -;?

v Uy(x — §;s)vo(§ — x';8) .
1+ (iVy/H)U0ss)
Now we determine the inverse Laplace transform. Using

expression (11) for U, and a table of Laplace transforms,
for instance Ref. 13, we obtain

(12)

Ulxax'st) = Uglx — x'st) — m;:"
xm(jx =1+ 16— —i 2o 1),
#” m
(13)

In Eq. (13) we introduced the Moshinsky function,'*'?
which is defined in terms of the complementary error func-
tion'?

M(x;k;t) =) e <D erfe [ (x — kt)/2it ], (14)
with
JVi=exp(in/4) and 1//i= exp( —in/4) .

Before we discuss the physical meaning of the Moshinsky
function in the next section, we should mention that there
are other, less direct methods, '° to derive the propagator U.
Also, in Ref. 16 the semiclassical approximation (#%—0) is
discussed in great detail.

III. THE MOSHINSKY SHUTTER

In 1952 Moshinsky'’ investigated the following prob-
lem: “A monochromatic beam of noninteracting particles
of mass m and energy #°k ?/2m moves parallel to the x axis
from the left to the right. At x = 0 the beam is stopped by a
shutter perpendicular to the beam. If at t = O the shutter is
opened, what will be the transient particle current observed
at a distance x from the shutter?”

For simplicity we assume that the shutter acts as a per-
fect absorber. Then, the wavefunction that initially repre-
sents a particle of the beam is given by

P(xt=0) = O —x)e*, (15)

with ®(y) =0 for p <0 and ®(y) = 1 for y> 0. The time

evolution of ¢ is obtained from Eqgs. (3) and (5). The result

is?®

P(x,630) = M (x;k;(%i/m)t). (16)

The Moshinsky function, can, therefore, be interpreted as
the wavefunction of a monochromatic particle, which at
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t = Ois confined to the left half-space x<0. Some important
properties of M (x;k;t) are given in the Appendix. The close -
relationship of M with the theory of diffraction follows
from evaluating |M |3,
|M (x;k;(A/m)e))* = HIL+ C(w)]1* + [} +S(u)]2},7
(17)

which has the familiar form of Fresnel scattering of light by
asemiplane.'” In Eq. (17), u = (#/mmt)"/?(kt — x) is the
argument of the Fresnel integrals'”® C(u«) and S(u).
From Eq. (17) we see that |M | is a function of u only. Let
us remark that M(x;k;t) can be expressed in terms of
two variables. For example, we could write
M(x:k;t) = M(x/\t;kt ). Weshall, however, not use the
reduced variables x/y/¢ and k y/t , because they do not have
a direct physical meaning.

We now modify the above problem by putting a delta-
function barrier right behind the shutter. If at # =0 the
absorbing shutter is opened, the beam will hit the barrier.
Now the question is: How do the particles of the beam
tunnel through the barrier? The key to this problem comes
from solving the time-dependent Schridinger equation

[#0, + (#/2m)32 |h(x1) = Vd(x)(x,0),  (18)

with the initial condition specified above [Eq. (15)].

In order to simplify notation, we shall use from now on
“atomic units” (#=m = 1). This means that x, = #/
(mV,) is the unit of length, p, = mV,/# the unit of mo-
mentum, m V2 /#* the unit of energy, and #°/(mV?2) the
unit of time.

It is clear from Egs. (3), (6), and (13) that, in the pres-
ence of the one-dimensional delta function, the time evolu-
tion of ¢ follows for 7> 0 from

P(x,t) = thy(x,1) — VOJ- dx'

XM(|x] + |x']; — V) $(x',0), (19)
where ¥, (x,t) is the free-particle wavefunction:
wox) = [ Kot [7.009(x'0) (20)

with K, given by Eq. (5).

For a monochromatic beam of particles, having the ini-
tial condition (15), we know already the free-particle solu-
tion: ¥, (x,?) is the wavefunction (16) for the Moshinsky
problem. We next calculate the integral on the right-hand
side of Eq. (19). This can be done by using some math-
ematical properties of the Moshinsky function that are list-
ed in the Appendix. From Eq. (A6') we can read off the
result:

Y(x,0) = M(x;k;t) + [Vo/ (Vo — ik)]
X[M(|x|; — iVet) = M(|x;k01 . (19)

For the purpose of illustration we shall calculate the tun-
neling current. As usual, the (particle number) current is
given by

J(xt) =Im[¢*(x,0)d, ¥(x,0)] . 2n

By applying Eq. (A1) to Eq. (19'), the derivative with
respect to x becomes

3, Y(x,0) = 3, Yo(x,) + [20(x) — 11 Vb(|x],) .

(22)
From Eq. (22) we see that the first derivative of the wave-
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function jumps as in the static case. As we go from the left
(x = — €) of the barrier to the right (x = €) of the barrier
we find for > 0

e Y0 |xoe — O YD) _ . =2Vop(0,1).  (23)

In Eq. (23), € is an infinitesimally small positive number.
The jump in the derivative occurs instantaneously, even if
the wavefunction is prepared in such a way that it does not
satisfy Eq. (23) at r = 0. This result is interesting but not
surprising, because the Schrédinger equation is a nonrelati-
vistic one; hence information and signals may be transmit-
ted at any speed. From Eq. (3), it follows that the propaga-
tor controls the properties of ¢(x,t> ;). The propagator
satisfies the time-dependent Schriédinger equation, and its
first derivative with respect to x jumps according to Eq.
(23).

Making use of Egs. (22) and (A1) we can calculate the
current. In the vicinity of the barrier we obtain

j(xe) =Im{g*( L en)
X [ikM(|€e|;k;t) — Uo( + €)1} (24)
For ¢> 0 one therefore has a continuous tunneling current
J(+ &) =j(~¢€t), €-0. (25)

Equation (25) must, of course, be true as long as Vj is real.
Having worked out the tunneling dynamics for a semi-infi-
nite plane wave, we shall now study the time evolution of a
certain class of wave packets in the presence of the delta-
potential barrier.

IV. TUNNELING OF WAVE PACKETS

In the last section we calculated the time evolution of an
infinite wave train which reaches the barrier at t = 0 from
one side (in our case from the left). We now discuss what
happens to a localized wave packet when it runs against the
delta-function barrier. From Eq. (A6) we conclude that
theintegral in Eq. (19) can be done analytically if #/(x,0) is
of the form

¢(x,0) = \/Ee~a\x+xo|eik(x+xo) ) (26)

Such a wave packet is centered around x = — x, and it
moves with an average momentum &. The decay parameter
a must be positive; the phase exp(ikx,) has no physical
meaning but has been added for convenience. Using Eq.
(A6), it is straightforward to calculate ¢(x,t) from Eq.
(19). For ¢> 0, the result is

P(x,t) =Ja[M(x + xo; k — ia;t)

+M(—x — x5 — k —ia;t) ]
+ Vova{J (xpd *) — J(xg, — 4)
+e~*[J(0,— 1) +J(0,4)]} (19")
with A = a — ik and
J(EA) = [1/(Vo— D) IM(|x| + & — iVt)
—M(x| + & —iAn]. 27)

It should be clear that J(£,4) depends also on V,, |x|, and 7.
The first bracket on the rhs of Eq. (19”) describes the time
evolution of the free (¥, = 0) wave packet.

If we want to study the tunneling current, we must know

the first derivative of ¥(x,t) with respect to x. Instead of

calculating the derivative directly from Eq. (19”), we rather
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use Eq. (19), and we obtain forx = + €
d, ¥(x,1) =39, Yp(x,t) + Vob(x,t), (28)

which holds true for an arbitrary solution of Eqgs. (1) and
(2) if t>1,=0. As before, 3, denotes the free (V,=0)
wave packet. The second term on the rhs of Eq. (28) does
not contribute to the tunneling current because the corre-
sponding imaginary part vanishes. Hence we are left with the
following expression for the current through the barrier:

JO£ €0 =Im[¢*(x,0)8, Yo%) ] s 4o (29)

The current is again continuous, i.e., j(€,£) =j( — &,¢), as it
must be for a nonabsorbing potential barrier. We are now in
a position to present some examples for the tunneling prob-
lem.

V. WAVE PACKETS VERSUS INFINITE WAVE

Let us first discuss the semi-infinite wave train of Sec.
II1. The tunneling current is given by Eq. (24), and it can
be calculated by evaluating expression (19') for the wave-
function. In other words, all one has to do is to calculate a
few Moshinsky functions. In view of Eq. (14) this amounts
to calculating the corresponding complementary error
functions. Figure 1 shows the particle number current (24)
right behind a barrier of unit strength (¥, = 1). The cur-
rent is plotted as a function of time for a wavefunction (15)
with & = 2. We are not surprised to see that the stationary
current is reacited only after a finite amount of time. More
interesting, we observe a time delay of the tunneling cur-
rent compared with the current of a free (¥, =0) semi-
infinite wave train. The reason for such a time delay is a
standby effect: The current being the same before and be-
hind the delta-function barrier [Eq. (29)], we conclude
that the particle spends some time in front of the barrier
before it undergoes tunneling. It is, however, impossible to
trace back the particle’s motion in configuration space be-
cause we are confronted with an incoming wave of infinite
extension.

Another piece of information about the tunneling pro-
cess is the time evolution of the particle’s density distribu-
tion |¢(x,)|*. Figures 2 and 3 depict the dependence of
|#h(x,¢) |* upon position and time for the semi-infinite wave
train discussed so far. Superposition of the incoming and

2.0

=0

current at x

° 2 . ] 8 10
time t

Fig. 1. Tunneling current (full curve, ¥, = 1) of a semi-infinite wave
train, Egs. (15) and (19'). Dotted line is the result for a free passage
(V, = 0) of the wave train. Initial momentum of the particles: k = 2. For
units see text following Eq. (18). Notice the time delay for tunneling.
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position

Fig. 2. “Three-dimensional” plot of the density distribution |¢(x,?)|
(vertical direction) as a function of x and . The density distribution
illustrates the tunneling dynamics of the semi-infinite wave train of Fig. 1.
At ¢ =0 the wave collides with the delta-barrier potential, located at
x=0.

reflected wave leads to an oscillatory profile for x <0. For
x > 0the outgoing wave has a rather smoothly varying den-
sity profile.

Let us now study the tunneling dynamics of wave pack-
ets. For a compact presentation of the tunneling dynamics,
we assume the wave packet (26) to start at
(x) = —xy= —2witha = 1. Since we want to compare
the behavior of this wave packet with the behavior of the
corresponding wave train, we choose V,=1 and
(p) =k =2 for ¢t = 0. Figure 4 reveals that now the tun-
neling current is not delayed relative to a free passage of the
wave packet. Furthermore, the current reaches its maxi-

A\,

/

'3
il |

i
iy

X Viih A{A‘i

.’lm

position

Fig. 3. Same plot as in Fig. 2, rear view.
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=0

current ot x

time t

Fig. 4. Tunneling current (full curve, ¥, = 1) of the exponential wave
packet, Egs. (26) and (19”), with initial values (x) = — 2, {p) =2 and
decay parameter a = 1. Dotted line is the result for a free passage
(¥, = 0) of the wave packet.

Fig. 5. “Three-dimensional” plot of the density distribution |¢(x,¢)|*
(vertical direction) for the tunneling of the exponential wave packet of
Fig. 4.

Fig. 6. Same plot as in Fig. 5, rear view.
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current at x=0

time t

Fig. 7. Same as Fig. 4, but now for a Gaussian wave packet with initial
values {(x} = — 2, (p) =2, and Ax* = Ap* =L

mum somewhat before r = 1, the time at which the corre-
sponding classical particle would arrive at x = £ = 0. The
oscillatory structure of the current for 7<1 is due to the
initial kink in the particle’s density distribution (see Figs. 5
and 6). This kink disappears immediately after the wave
packet has started to move. It is not hard to understand this
effect, if one bears in mind that the propagator (13) is an
analytic function of x and x’ except for x = x’ = &, with &,
being the position of the delta barrier.

We may wonder whether the vanishing time delay is a
peculiarity of the exponential wavefunction (26) and
(19”). Let us therefore take a Gaussian wave packet which
has initially (r=0) minimum uncertainty with
Ax? = Ap* = }, and that has the same starting values as the
exponential wave packet: (x) = — 2and (p) = 2. Inorder
to obtain ¥(x,t), we must numerically carry out the inte-
gration of the rhs of Eq. (19). The resulting tunneling cur-
rent and the density profile are shown in Figs. 7-9. Again
we find a smooth tunneling current with negligible time
delay and a density distribution similar to that of Figs. 6
and 7.

Fig. 8. “Three-dimensional” plot of the density distribution |¢(x,?)|?
(vertical direction) for the Gaussian wave packet of Fig. 7.
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Fig. 9. Same plot as in Fig. 8, rear view.

VL INTERPRETATION OF THE RESULTS

We have found analytical tunneling solutions for delta-
function barriers. It is well known that such a potential is
the limit of a square-barrier potential of height U— o and
thickness @ —0. The area a- U remains fixed and finite and
equal to ¥, Let us, for a moment, assume that botha and U
are finite. Then, a classical particle with enough energy to
pass over the barrier will be delayed as compared to a mo-
tion where the barrier is absent. Such a time delay has an
obvious reason: While traversing the barrier, the particle
loses momentum and, therefore, slows down. In a quantal
treatment of over- and underbarrier passage problems one
again finds time delay. For example, the slowing down of
neutrons in a gravitational field gives rise to observable
interference effects.'® As an important example of under-
barrier passage we should mention the “time delay line”
concept in modern circuit theory.'® The opposite is also
true: There is a time advance®® for particles that are scat-
tered by an attractive potential. In all three examples men-
tioned here, the particle has reasonably sharp energy. In
this article we have shown that particles with rather well-
defined energy (represented by semi-infinite wave trains)
will suffer time delay even when they pass through a zero-
range barrier. From Eq. (19') it follows immediately that
as the momentum £ of the particle increases, the scattering
contribution to ¥(x,t) becomes less important. Therefore,
the time delay shrinks when the particle’s energy is in-
creased. Instead of varying the kinetic energy E of the par-
ticle one can also think of keeping E fixed and changing the
area V,, of the barrier. It is clear that large values of ¥, give
rise to long delays.

From Sec. I1 it follows that for electrons the unit of time
is given by
7 _5.015 10-15
mV? V3
if ¥, is measured in units of eV A. Although typical tunnel-
ing barriers in microstructures'® cannot be considered as
delta-function barriers, we nevertheless estimate V, =a-U
by taking U =0.2eV and a = 50 A. In this case the unit of
time is 5 10~ '7 5, which is also a typical value for a time

s, (30)
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delay (except for very slow electrons where the delay can
easily be larger by a factor of 100). Such a short time could
only be measured if the particle would tunnel back and
forth many times. In this context we should mention the
time delay of reflected light (Goos—Hinchen shift*')
which can, in fact, be measured by multiple reflection ex-
periments.

It is well known that localized (finite) wave packets can
be viewed as a superposition of many different momenta
states. In other words, wave packets localized in configura-
tion space contain a more or less broad momentum distri-
bution, depending on the degree of localization. The trans-
mission probability’!

T =—F5 (31)

E+mV3}/ 2%

favors the high-momentum components. These compo-
nents determine the tunneling dynamics; but their time de-
lay is small or negligible, a fact that is borne out by the
results shown in Figs. 4 and 7. In this context we would like
to remark that a better understanding of the tunneling dy-
namics can also be achieved by studying time-dependent
tunneling in the presence of an external field,* i.e., tunnel-
ing through time-dependent barriers.

We have tried to understand “a posteriori” the rigorous
results presented in Secs. II-V. The reader is, of course,
welcome to modify the statements of this last section ac-
cording to his own taste.
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APPENDIX

We want to summarize some properties of the Mo-
shinsky function defined by Eq. (14). From this definition
and from the definition'® of the complementary error func-
tion we easily obtain

9, M(x;k;t) = ikM(x;k;t) — Uy(x;8); (A1)
9, M(x;k;t) = ixM(x;k;t) — t 3, M(x;k;t); (A2)

9, M(x;k;t) = (x/28) Uy(x;t) — (k/2)3, M(x;k;t),
(A3)

where U, denotes the free propagator. Since M is a solution
of the free Schrodinger equation we have

i3, M(x;k;t) = — 132 M(x;k;t).
Noting that erfc(z) + erfc( —z) =2, we find
M(x;k;t) + M( — x; — k,t) = exp(ikx — ik %t /2) . (A5)
The following indefinite integral of the Moshinsky func-

(A4)
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tion,
J. dx' e M(ax' + bic;t)
e [M(ax + bic;t)
= ax + b;c;
i(k + ca) +

—M(ax + b; — k /a;t) ], (A6)

can be verified through partial integration, using Eq. (A1).
In Eq. (A6) the constants a,b,c,t, and k are arbitrary but
PHopital’s rule must be applied for k- — ac. From Eq.
(A6) the definite integrals used in this article are readily
obtained: In order to verify the rhs of Eq. (19’) we need to
know the definite integral

f dx' e M(|x'| + |x|; — V1)
L[ Mxlikst) — M(x|-iVen) 1,

=V0—tk

which is a consequence of Eq. (A6). Also, the rhs of Eq.
(19”) can be verified by use of Eq. (A6).

(A6)

*) Permanent address: Physik-Department, Technische Universitit Miin-

chen, 8046 Garching, West Germany.
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