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On the harmonic oscillator inside an infinite potential well
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The exact solution to Schrodinger’s equation for a three-dimensional harmonic oscillator
confined by two impenetrable walls is presented. The energy levels of this system are obtained as a
function of wall separation as well as distance of the center of the oscillator to the walls. The force
exerted by the walls on the oscillator is also evaluated, showing a classical behavior.

1. INTRODUCTION

The harmonic oscillator is perhaps one of the simplest
systems that has been extensively studied both classically
as well as quantically. At the undergraduate level, the stu-
dent learns that the quantum oscillator problem allows for
exact solutions to Schrodinger’s equation, providing us
with a complete set of basis functions useful in the treat-
ment of a great variety of problems in modern physics.'
Being one of the few exactly solvable problems in quantum
physics, we consider it instructive to introduce the student
to the properties of bounded quantum systems by solving
Schrédinger’s equation for a three-dimensional harmonic
oscillator confined within two infinite potential walls. In
passing, we should mention that the study of bounded
quantum systems has become increasingly important in re-
cent years, mainly to understand the behavior of real sys-
tems, such as atoms under high pressure, electrons trapped
in vacancies of crystals, tunneling of electrons and elec-
tron-hole pairs through multilayered crystalline struc-
tures, etc.

For clarity of presentation, we have divided this article
into three sections. Section II deals with the mathematical
details concerning the solution of Schrédinger’s equation
in cylindrical coordinates for the radial and angular parts.
The eigenfunctions and eigenvalues for this part of the
problem are explicitly obtained. In Sec. III the wavefunc-
tion and eigenvalues associated with the z dependence of
the wave equation are found. This part of the total wave-
function contains the information on the effect of the con-
finement on the oscillator states. In this section we also
evaluate the force exerted by the walls on the oscillator by
means of the Hellmann—Feynman theorem. Finally, in Sec.
1V, a discussion of the results is presented.

II. SEPARATION OF SCHRODINGER’S
EQUATION

Let us assume a three-dimensional harmonic oscillator
bounded by two impenetrable walls, as depicted in Fig. 1.
The boundary condition makes it difficult to treat the prob-
lem in spherical coordinates, as would be the case for the
free-oscillator. Making use of cylindrical coordinates (p, @,
z), Schrodiner’s equation may be written as

[( = #/2M)V? + V(p,z) — E [¢(p,p,2) =0, (N
where

(K/2)[p*+ (z—a)’] (O<z<d),

== 2
Vip.2) [oo (otherwise), (22)
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where d is the distance between the walls and a is the posi-
tion of the center of the oscillator well relative to one of the
walls (see Fig. 1). The Laplacian operator in Eq. (1) in
cylindrical coordinates reads explicitly as

1 4 d 1 9% | 39*?
st—-——( a—)+——-—+—-.
p o\ ap) g a7
Setting M =#=K=1 and writing ¥(p,p,2) as the
product:
Y(p.p,z) = R(p)F(p)G(2) (2¢)

after separating the variables, the following set of equations
is obtained:

R"(p) +p 'R’ (p) + RE, — m*/p* — p*)R(p) =0,

(2b)

(3)
F'" (@) + m*F(p) =0, (4)
G"(z) + [2E, — (z—a)*]G(z) =0, (5a)

where E|, E,, and m are the separation constants with the
requirement that the total energy £ be given as

E=E +E,. (5b)

The primes in Egs. (3)-(5) indicate differentiation with
respect to the argument of the corresponding function.
Solution of Eq. (4) immediately leads to

F(@) = (2m) "2 exp(img) , (6)
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’ .

Fig. 1. Potential energy curve for an harmonic oscillator between two
infinite potential walls. Only the z dependence is drawn.
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where the normalization factor has been obtained through
the periodicity requirement F(¢) = F(g@ + 2), charac-
teristic of the azimuthal solution. The quantity m in Eq.
(6) is recognized as the magnetic quantum number and is
restricted to the values m =0, + 1, + 2,... .

In order to solve Eq. (3), we first write the radial func-
tion as:

R(p) = w™'"?H(w), (M

where we have defined w = p”. After introducing R(p) as
given by Eq. (7) into Eq. (3), it may be easily shown that
H(w) satisfies the equation
H"(w)+ [ -4+ (E/2w) + (1 — m?)/(4w?) JH(w)
=0. (3)
This is precisely Whittaker’s equation, whose solution may
be expressed as:*
H(w) = Dexp( —w/2)w**"*M(u — e+ L,2u + L,w),
)
wheree = E,/2,u = |m|/2,and M(a,5,w) is the Kummer
function’ witha = — € + 4, 8=2u + 1, and D is a nor-
malization constant.
To guarantee proper behavior of H(w) as w— «, one
must have
pu—e+l= —n=(m—-E +1)/2 (n=012,.),
' (10)
therefore, the energy E, is given as
E, =2n+|m|+ 1. (11)
Substituting Egs. (10)-(11) into Eq. (9) yields the fol-
lowing relation:
H(w) = D [nV/|m’|!(|m| + n)!]exp( — w/2)
Xw(|m|+l)/2L]nm|(w) , (12)

where L [ (w) corresponds to an associated Laguerre pol-
ynomial. Returning to the original variable p, the normal-
ized radial wavefunction results as

R, (p)= [2n!/(|m| +n)!]\2
Xexp( —p*/2p" L") (13)

I11. SOLUTION OF THE z EQUATION

Due to the boundary conditions, it is clear that the solu-
tion of Eq. (5) will contain the relevant information on the
effect of confinement on the energy levels of the system. Let

us define the auxiliary variable y = 2(z — a). Equation
(5) may then be written as
G"(y) — ()’/4—E,)G(y) =0. (14)

This equation is satisfied by the parabolic cylinder func-
tions: U( — E,,y) and U( — E,, —y). Therefore, the
most general solution will be

G(y) =AU(—E,y) + BU(—~E) ~y), (15)

with 4 and B two constants to be determined by imposing
the boundary conditions atz=0 (y = —ay2) and z=d
[y=V2(d-a)],
G(-a2)=G[V2d-a)] =0,
plus the normalization condition

(16a)
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d 1 V2(d —a)
f G*(z)dz=—
[+) \[i —ay2
Using Egs. (15) and (16), we obtain the following set of
equations:

G*(yydy=1. (16b)

AU( — E,, — a\2) + BU( — E,,a\2) =0, (17)
AU[ —E\2(d—a)] + BU[ — Ey2(a—d)] =0.
(18)

A nontrivial solution to Eqs. (17) and (18) exists only if
the secular determinant is zero, i.e.,

U(—E,,—a2)U[ — E;\2(a—d)]
—U(—Ena)U|[ — E,2(d—a)] =0. (19)

This last equation furnishes the quantization condition
that allows us to find E, as a function of the distance d
between the walls and the position a of the oscillator center
relative to one of the walls.

Denoting by E {(a,d) the sth root of Eq. (19), with
E{V <E(® <E{®--:, the total energy of the system then
becomes

E,.=2n+|m| +E{@ad) +1, (20)

where n =0,1,2,...; m =0,+ 1, + 2,...,and s = 1,2,3,... .

Note that, just as in the case of the free-oscillator, an
accidental degeneracy is observed. For a given value of s,
we have manifold of values for # and m, yielding the same
result for 2n 4+ |m| + 1. For instance, n =1, |m| =0 (s
state), and n = 0, |m| = 2 (d state) give the same energy
for fixed s. Also, as expected, the ground state is nondegen-
erate.

Before analyzing the results of the calculations indicated
above, it is interesting to evaluate the force exerted by the
walls on the oscillator. This may be done through use the
Hellmann—Feynman theorem,?
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Fig. 2. Ground state (4), and first two excited states (B) and (C) for
different wall separations (d) as a function of relative position (@) of the
oscillator center from one of walls (see text).
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Fig. 3. Force exerted by the walls on the oscillator calculated according to
Eq. (21) as a function of parameter (a) ford =2 and d = .

—aEgr — OBy av
e e  uF
21 rd
=L, fo X (z—a)G*(2)R*(p)FX(p)p dp do dz
1 2(d—a)
=— yG3(y)dy, (21)
2) 47

with G(p) as defined by Eq. (15).

IV. RESULTS AND DISCUSSION

The roots of Eq. (19) have been found numerically for
different values of the parameters @ and d with a precision
of 10™°. Figure 2 shows the values of E,,,,,; for the ground
state (Eqo;) and the first two excited states ( Eqqgp, Eggs), a8
a function of a and for d = 2,4, and 6, respectively. For
clarity of presentation, we have labeled the curves for each
value of d by A4, B, and C, indicating Eyq,, Egq,, and Eyqs,
respectively.

We first note the symmetry shown by the energy curves
around @ = d /2 for all the states. This is not surprising, due
to the symmetry of the problem. Note also the shift of the
energy levels toward higher values as the distance between
the walls is reduced. This energy shift is larger for the excit-
ed states, showing a slower tendency to the unperturbed
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situation as one of the walls is taken to infinity. In fact, in
the latter case, the problem is reduced to that of a three-
dimensional oscillator in front of a wall. As ¢—0 and
d— w, U( — E,y) approaches the Hermite polynomial
H_ (y) and E, >5+ 1/2(s = 1,3,5,...). Hence, according
to Eq. (20), E,,.., »2n + |m| + s + 3/2; i.e., only the odd
states will satisfy the bundary condition. This behavior ap-
pears due to the lack of nodes of the even y functions at
y=a=0. Conversely, if a,d— «, we recover the energy
spectrum of the free-oscillator, as expected.

With regard to the force on the oscillator, Fig. 3 shows
the corresponding values obtained through Eq. (21). We
observe that the force is zero for a = d /2, which means that
the two walls are exerting equal and opposite forces at the
center. The oscillator will bounce back and forth between
the walls, driven by a restoring force proportional to its
displacement relative to the central region of confinement.
This is just what we would expect classically, too. When
one of the walls is brought to infinity, we see that for dis-
tances to the wall a > 3, the oscillator is practically unper-
turbed. Examination of Fig. 2 supports this observation.

We hope that, for the undergraduate and graduate stu-
dent, the solution to this problem will shed some light on
the properties of confined quantum systems. We have
shown that Schrodinger’s equation is exactly solvable for a
three-dimensional harmonic oscillator confined within two
infinite potential walls. As in the case of the free-oscillator,
the basis set spanned by the wavefunctions found in this
article [Egs. (6), (13), and (15)] could help us to treat
more complicated systems under the same confinement
conditions.
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