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effect — a decrease in the effective mass of the system.

In solid-state theory, an electron’s effective mass can be
more or less than its vacuum value due to interaction with
the crystal lattice.®> An electric field interacts, not only with
the electron, but also with the lattice to which the electron
is coupled. Similarly, an effective mass for our cart system
can be defined by the initial change in momentum after the
yank by the suddenly taut dial cord:

Mefr=(MBVB +MCVC)/VB' (3)

This quantity is plotted against M, in Fig. 6, using ex-
perimental values of the velocities in the first full 0.1-s in-
tervals after contact. In the threshold region, the effective
mass of the cart system is within 5% of 400 g, the sum of the
cart masses. As M, increases well beyond the value needed
for bond breaking, the curve shows M. approaching My.

A consideration of the limiting behavior of the system
provides an intuitive feel for the shape of this curve with
different intermagnetic bond strength. The weaker the
bond, the more rapid the decline to the asymptote (curve
labeled weak); in the limit of an infinitely strong bond,
there would be no decline at all and the effective mass

would remain equal to the sum of the two cart masses, no
matter how hard the yank at contact.

The experimental study described here is time efficient
and dynamic, simple of technique, and rewarding in its
potential harvest of physics principles.

'A. P. French, Newtonian Mechanics (Norton, New York, 1971), P 339.
See also Kittel er al., Mechanics (Berkeley Physics Course) (McGraw-
Hill, New York, 1973), 2nd ed., 197, prob. 7.

*Magnets available from Edmund Scientific, 101 E. Gloucester Tpke,
Barrington, NJ 08007. Catalog # 603.47.

*Hooke’s law spring available from Central Scientific Co., 11222 Melrose
Ave., Franklin Park, IL 60131-1364 (1985-86 catalog #73955).

‘W. R. Smythe, Static and Dynamic Electricity, (McGraw-Hill, New
York, 1950) 2nd ed. p. 435. The relevant equations in the second edition
of this graduate text (the author being aware of no later edition) have
several typographical errors. The power of rin Eq. (4) should be 4, not 3.
More confusing is the constant appearance of the permeability u in the
denominators of Eq. (2)-(4). Dimensionally, 4 must be in the numera-
tor.

3See, for example, R. A. Smith, Wave Mechanics of Crystalline Solids
(Chapman & Hull, London, 1961), p. 126.
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The radial form of Hylleraas’ equation for the hydrogen atom, A, |El ) = 4#i'a=*|El ) (a = Bohr
radius), is considered and it is shown that the operator A, can be factorized. Hence ladder
operators P /£ are derived that are linear in the position operator r and are nonlinear functions of

the momentum operator p.

It is proven that PF|El) =2#a~

T+ (432

X (2M#i~*a’E)]'?|E,l + 1). In the momentum representation of wave mechanics the solutions
to these equations are the radial momentum-space wavefunctions for the hydrogen atom. Thus a
simple method of calculating these wavefunctions is obtained. The results complement the
familiar operator solution for the hydrogen atom that is based on factorization of the radial
Hamiltonian and yields operators that are linear in p and are nonlinear functions of r.

L. INTRODUCTION

The abstract ladder operator method is a standard tech-
nique for solving the simpler problems of quantum me-
chanics: for example, angular momentum, the linear oscil-
lator; and the hydrogen atom. It can be used to determine
the eigenvalues of an operator such as the Hamiltonian by
constructing operators that transform eigenkets into each
other. An attractive featuré of this method is that it is based
on commutation relations, such-as the canonical commuta-
tion relations for the position and momentum operators,
and does not depend on any particular realization of the
operators. In fact, it is usually less cumbersome to apply
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than the more frequently used techniques of wave mechan-
ics.

A particularly clear application of the abstract operator
method to the isotropic three-dimensional oscillator and
the hydrogen atom has been given by Newmarch and
Golding,' who derive ladder ‘operators by factonzmg the
radial Hamiltonian.”> The operators obtained in. this way
are linear in the momentum operator p and they are also
nonlinear functions of the position operator r. When_ ex-
pressed as wave-mechanical operators in the coordinate
representation these ladder operators are the differential
operators derived by Schrédinger® and also by Infeld and
Hull" in their study of factorization of the Sturm—Llouvﬂle
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equation. The corresponding ladder operator equations are
first-order differential equations whose solution yields the
radial part of the coordinate-space wavefunctions.’

It is often emphasized in texts on quantum mechanics
that the symmetry between p and r, which is evident from a
comparison of wave mechanics in the coordinate and mo-
mentum representations, arises because these are two par-
ticular representations of quantum mechanics.® Thus it is
natural to inquire whether for the isotropic three-dimen-
sional harmonic oscillator (hereinafter referred to as the
oscillator) and the hydrogen atom, one can derive abstract
ladder operators analogous to those described above, but
which are linear in r and are also nonlinear functions of p.
Of course, for the oscillator the answer is fairly obvious; it is
considered here because it is instructive (Sec. II).

For the hydrogen atom the answer is less obvious and
forms the main purpose of this article. Our starting point is
an alternative form of Schrddinger’s equation for the hy-
drogen atom, namely, that derived by Hylleraas.” We show
that the radial Hylleraas operator [Eq. (15)] can be fac-
torized, and in this way we derive ladder operators that are
linear in r and are nonlinear functions of p (Sec. II1). The
coefficients for the transformations effected by the ladder
operators are calculated, and in the usual way they yield
the energy eigenvalues. The wave-mechanical forms of
these operators in the momentum representation are lad-
der operators for the orbital angular momentum quantum
number / in the radial part of the momentum-space wave-
functions. Thus we obtain a simple method for calculating
these wavefunctions (Sec. IV). The usual methods of cal-
culation are often described as difficult®!! and they are not
given in any of the standard texts on quantum mechanics.
The earliest method used Fourier transformation of the
coordinate-space wavefunctions'?: this requires some diffi-
cult integrations.® Momentum-space wavefunctions for the
hydrogen atom have also been derived by solving Hyller-
aas’ equation in spherical coordinates,” and in toroidal co-
ordinates,'® and by solving an integral equation."

By contrast, the calculations presented in this article are
analogous to the familiar ladder operator method that is
based on factorization of the radial Hamiltonian: they
would be suitable for inclusion in an introductory or inter-
mediate quantum mechanics course. To increase the peda-
gogical value of this article we give a brief summary in
Appendix A of the well-known factorizations of the radial
Hamiltonian for the oscillator and the hydrogen atom. A
comparison of these factorizations with those presented in
Secs. II and III should be helpful and instructive to new
students of this subject.

II. THE OSCILLATOR

The Hamiltonian is
H= (2M)"'p’ + iMo’r*. )

In Appendix A we summarize the familiar factorization of
a radial Hamiltonian for the oscillator that yields ladder
operators linear in p. From these calculations it is clear how
to obtain ladder operators that are linear in r."* We intro-
duce the radial Hermitian operators

p=(pp)'"? (2)
and
r, =3(pr + rp) =p~ ' (pr + i#). (3)
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These satisfy the commutation relation

[pr,] = —ihi (4)
and the operator identity
L?=p*(r’ —1}), (5)

where L = rXp. If we use Eq. (5) to eliminater? in favor of
r? in Eq. (1) and then replace L* with #°/(1 + 1) we obtain
the radial Hamiltonian

H, = iMw?[ 2 + #1014+ Dp~2] + (1/2M)P. (6)

The factorization of Eq. (6) is similar to that of Eq.
(A2) in Appendix A, and we merely state the results:

Mo*PF (P =2H, —2iw(l+}+1), (M
P =r, Fii(l+1+p™ ' £i(Mw) 'p, (8)
PR, =(PH), (9)
PF|El) ={2M ~'o™*[E— (I + 4§+ 1) |fw}"?

X |E F #iw,l + 1), (10)

where ' denotes the adjoint operator and |E! ) is a normal-
ized eigenket of H, with eigenvalue E. In Eq. (10) the
phase factor has been set equal to unity. If » > 0 then from
Eq. (10), E = (n + })#w, where n = 0,1,2,... .

The operators P = of Eq. (8) are linear in r. In the mo-
mentum representation of wave mechanics r = i#V,, and
Eq. (3) becomes

rp=iﬁ(—‘7—+-1-). (11)
dgp p

Equations (8), (10), and (11) yield a pair of first-order
differential equations whose solutions are the radlal mo-
mentum-space wavefunctlons for the oscillator.'?

I1I. THE HYDROGEN ATOM

The Hamiltonian is
H= QM) 'p*—#Ma)" 'r}, (12)

where a = 417'60ﬁ2(Me )~ !is the Bohr radius. We have
summarized in Appendix A the familiar factorization of
the radial Hamiltonian, which yields ladder operators lin-
ear in p.

We now consider the topic that is the main purpose of
this article: to obtain ladder operators P /= for the hydro-
gen atom that are analogous to those presented above for
the oscillator; that is, operators that are linear in r. Com-
parison with the results given above for the oscillator sug-
gest how this may be done: if we can write Schrédinger’s
equation for the hydrogen atom in a form involving an
operator that is quadratic in r and if we use the identity Eq.
(5) to obtain the radial form of this operator, factorization
of this radial form may yield the desired operators.

Actually, for the hydrogen atom a Schrodinger equation
that is quadratic in r was first presented long ago by Hyller-
aas. 7 It can be derived as follows. The action of the operator
r*(p? — 2MH)? on a ket |Elm) is the same as that of the
operator

A = r¥(p? — 2ME)? — 2ifipr(p* — 2ME)
+ 4#°(p* — 2ME), (13)

as is evident by expanding the former operator and using
r?[H,p?] = 2i#*(Ma) "' (pr + 2i#)r~". Thus noting Eq.
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(12), we have

A|Elm) = 4#i'a=*|Elm), (14)
which is Hylleraas’ equation for the hydrogen atom.” (For
convenience we omit a subscript £ on A.)

We use Eq. (5) to eliminate r? in favor of 77 in the first
term of Eq. (13), and then, for the purposes of operating on

|EIm), we replace L? with #7/(] + 1). In the second term of
Eq. (13) we use Eq. (3). This yields the radial operator

=r(p> — 2ME)* — 2itir,p(p*> — 2ME)

+#1(I + 1)p~2(p* — 2ME)>. (15)
To obtain the factorization
P1i1P1i=Al+F1i, (16)

where F * isindependent of r and p, inspection of Eq. (15)
suggests that we try

P =r, (0> —2ME) + [} (p). 17)
Then
P PE =ry(p* — 2ME)* — 2ifir,p(p* — 2ME)
+ (fF ~fi5)r.(p* — 2ME)
+lﬁ“[1—(p —2ME) —f% S, (18)

where we have used [7,,/(p)] = ifi(df /dp). From Egs.
(15), (16), and (18)

+ —fI:il)rp(pz—ZME)

+ zﬁf—’(p 2ME) —fF S}
= h21(1+ 1)p~2(p* —2ME)* + F = (19)

Equations (19) can be solved for F = and the functions
S (p). First we note that r appears only in the first term in
Eqgs. (19). Therefore,

S =117 (20)
and
f’ (p> — 2ME) — (f;7)?
dp
=#(l + 1)1;—2(112 —2ME)* + F, 1)
# YL - (fi)?
P
=#(I+ 1)+ 2)p~%(p* —~ 2ME)* + Fr .. (22)

Addition and subtraction of Egs. (21) and (22) yield

()= —#U+ 1)*p %(p?* — 2ME)?
—F+Fy) (23)
and
fl v —2 2
—— = — (I + 1)p~%(p* — 2ME)
dp
+i(F" —F7 ) (p*—2ME) . (24)

Because {(p” — 2ME) ' dp is a function that does not oc-
cur in Eq. (23), we must have

Fr =F}. (25)
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Then the solution to Eq. (24) is
fir =i+ Dp~'(p* + 2ME) 4+ C,, (26)

where C, is independent of p. From Egs. (23), (25), and
(26)

Fpr =4I+ 1)2(2ME) — 2ifi(I + 1)
X Cp~'(p* + 2ME) —

But F;* is independent of p: therefore, C; = 0.
Thus we have derived the factorization Eq. (16), where

P =r,(p* — 2ME) + ifi(l + } + ))p~ ' (p* + 2ME)

(27
and
=47 (1 + |+ 1)?(2ME). (28)
The adjoint of Eq. (27) is
(P =P, —2ifp, (29)

which is different from the corresponding result for the
oscillator, Eq. (9).

Let |El') denote a normalized eigenket of A, with eigen-
value 4#i*a=2 [see Eq. (14)]. Then from Egs. (16) and
(25)

Ay (PE|EL)) =4#'a 2 (PF|E])).

Thus
PE|ElY =B Z|E]l+1). (30)
The coefficient £ & is given by
1B &7 = ((P*)P )
=(P[ P —2UfipP ), (31)

where () = (El|Q|E!'). It is shown in Appendlx B that
(pP /) = 0. Substituting Eqgs. (16) and (28) in Eq. (31)
yields

BE1P=4a[1+ (I +}+ 1> (2Mﬁ—2a2E)]. (32)

Thus for negative energy states Eq. (32) yields the Bohr
formula

E= —#O2Ma*n®)"', n=1,.2,., (33)
and we can write

PEinl) =B |nl+1), (34)

|,3,;—H2=4ﬁ4a_2[1 (I+1+1)n ‘2]. (35)

IV. APPLICATION TO THE MOMENTUM
REPRESENTATION

In the momentum representation of wave mechanics r,
is given by Eq. (11). From Eqgs. (2), (11), (27), (34), and
(35) we obtain the first-order differential equations

[(p2 +#a"n7?) i + (IJ_r R —l—)p

L )(ﬁza‘zn 2)1’“‘]:15,.:(11)

!
F(egF
1

2 /2
=2ﬁ0_1[1—-(1 +7i‘2—) n_2:| ¢n,lj:1(p)9 (36)

where we have set the phase factors in 8% equal toi. From
Eq. (36) we can calculate the radial momentum-space
wavefunctions for the bound states of the hydrogen atom.

O. L. de Lange and R. E. Raab 915



Starting with / = n— 1, we have

((P + ﬁza_zn_z) + (n+3)p

—(n— 1)(ﬁ2a_2n_2)P_1)¢n,n— 1(p) =0
Thus

n—1

¢n,n—1(p)= p ’

( 2 2 —Zn—Z)n+1

(37)
where N is a constant. If we impose the normalization

J‘; |¢n,n— 1 l2p2 dp = 1:

it follows that
4n -2 2 2n+3
|N|z=£_(_””(i) . (38)
7(2n)! an

In this calculation we have used the integral'®
[[ww+n-r2 du=r@reire+m-.
(4]

The normalized wavefunctions with /=n—2, n — 3,...,

1,0 can be obtained by successive application of the lower-

ing operator in Eq. (36) to the wavefunction g, ,, _, (p) of
-Eq. (37).
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APPENDIX A

We summarize the factorizations of the radial Hamilto-
nian for the oscillator and Coulomb potentials, which yield
ladder operators linear in p.!” The radial Hermitian opera-
tors 7= (rr)'/? and p, = L(fp + pt) =7~ '(rp — i)
satisfy the commutation relation [7,p, ] = ifiand the oper-
ator identity

L*=r*(p* - p?). (Al)

For the oscillator Eq. (A1) can be used to eliminate p® in
favor of p? in the Hamiltonian Eq. (1). Replacing L? with
#1(] + 1) yields the radial Hamiltonian

H, = QM) [p2 + I+ )r ] + Mo’ (A2)
This can be factorized:'’

RE R =2MH, —2(I+} + 1) M, (A3)
where

R =p, +ii(l+1+)r ' FiMor, (A4)

REL =R (A5)

Let | El ) be a normalized eigenket of H, with eigenvalue
E. From Eq. (A3)

H (RE|El)) =(E F#w)(R *|El)).
Therefore,

R E|El) = af |E F ol +1).
From the expectation value of Eq. (A3)

lagi > =2M [E— (I+} + Dfw].

(A6)
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If » > 0 it follows that
=(n+3fiw, n=0,1,...
Similarly, for the hydrogen atom

H = QM) '[p} + #I(I+ 1)r ? —2#Pa""r "]

(AT)
and!’
RL RE=2MH, +#a2(I+1+1) 7%
where
Rit=p, +ifi(l+i+Dr ' Fifia 'U+3+D7
(A9)
RE =R (A10)

Let | El ) denote a normalized eigenket of H, with energy E.
From Eq. (A8)

H, ,(R*|El)) =E(R *|El)).
Therefore,

(A8)

Rt |El) =af|El+1). (All)
The expectation value of Eq. (A8) yields
la&|?=2ME +#a 2(I+1+ )% (A12)

Thus for negative energy states E is given by Eq. (33).

In the coordinate representation of wave mechanics
p, = — ifi(r~' 4+ 3/9r), and the solutions to Eqs. (A6)
and (A11) are the radial coordinate-space wavefunctions
for the oscillator and the hydrogen atom, respectively.

APPENDIX B

From Eq. (27)
pP = = pr, (0 — 2ME) + i#i(l +} + ) (p° + 2ME).

(B1)
Now
(pr, (0> — 2ME)) = 2#a—(pr,r ')
=2#%a {(pr + i)r 1)
= 2#a"(r~ Y (rp — ifi))
=0, (B2)
because
[Hr) = —ifiM ~'r~(rop — i)
and
([H,r]) =0.
Also
(p*+2ME ) =2(2MH + #a~'r~') =0, (B3)

because [H, rp] = —ifiM ~'(2MH +#a~'r~') and
([H, rp]) = 0. Equations (B1)-(B3) yield (pP *) =

'J. D. Newmarch and R. M. Golding, Am. J. Phys. 46, 658 (1978).

2A similar operator method has been discussed by H. S. Green, Matrix
Mechanics (Noordhoff, Groningen, 1965), Chap. 6.

3E. Schridinger, Proc. R. Irish Acad. A46, 9 (1940); A46, 183 (1941).

‘L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

5See, for example, L. C. Biedenharn and J. D. Louck, Angular Momen-
tum in Quantum Physics (Part 1) (Addison-Wesley, Reading, MA,
1981), p. 357 for the hydrogen atom. A similar treatment applies for the
oscillator. Explicit formulas for the wavefunctions are given in Ref. 8, p.
1663.
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$See, for example, E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley,
New York, 1970), p. 144.

"E. Hylleraas, Z. Phys. 74, 216 (1932). A detailed discussion of wave
equations in momentum space has been given by M. Lévy, Proc. R. Soc.
London Ser. A 204, 145 (1950).

8p. M. Morse and H. Feshbach, Methods of Theoretical Physics (Part IT)

(McGraw-Hill, New York, 1953), p. 1679.

°H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-
Electron Atoms (Academic, New York, 1957), p. 36.

103, J. Klein, Am. J. Phys. 34, 1039 (1966).

VE. V. Ivash, Am. J. Phys. 40, 1095 (1972).

12B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).

13V. Fock, Z. Phys. 98, 145 (1935). In this paper it is shown that the
momentum representation exhibits the hidden symmetry of the Cou-

lomb potential in quantum mechanics.

14The isotropic p-dimensional oscillator also possesses ladder operators
which are linear in both r and p: see, for example, A. Messiah, Quantum
Mechanics (Vol. 1) (Wiley, New York, 1966), p. 453. These ladder
operators change the quantum number #, in the basis #,, ..., n,; they are
different from the operators considered in Sec. II and Appendix A.

151t is straighforward to show that the solutions to Eq. (10) are equal to
the radial momentum-space wavefunctions given in Ref. 8, p. 1679.

'H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed.
(MacMillan, New York, 1961), p. 213.

""See, for example, Refs. 1 and 2. In Ref. | a term — /#ir~' has been
omitted from the definition of the radial momentum, p,. See Ref. 2, p.
64.

A spherical mirror Fabry-Perot interferometer for microwave
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Although Fabry—Perot interferometers have found widest application in the visible portion of the
spectrum, their properties are conveniently observed in the microwave region, where high-quality
spherical mirrors are easily fabricated on a lathe, and partially transmitting (high reflectance) flat
mesh is commercially available at modest cost. The scaling properties of paraxial beams of such
interferometers, as the frequency is varied from optical to microwave for a fixed resonator
geometry, are well known. This allows studies that are relevant to contemporary optics research
tobe carried out in an upper division undergraduate laboratory without the need for sophisticated

equipment.

L INTRODUCTION

Microwave optics experiments using low-cost klystron
sources are commonplace in elementary physics laborato-
ries for demonstration of wave phenomena such as interfer-
ence, diffraction, and polarization. This article describes a
natural follow-up to these familiar experiments: a method
for study of the eigenfrequencies and intensity profiles of
the Gaussian-beam modes supported by a spherical-mirror
Fabry—Perot resonator is presented. These quasioptical in-
vestigations, suitable for upper-division laboratories, lead
the student directly into contemporary research concerns.
For example, in the field of high-precision measurements,
by servo-locking a laser frequency to a transmission or re-
flection fringe of an isolated optical resonator, linewidth
below 100 mHz is obtained' and it has been conjectured?
that laser frequency can be measured to one part in 10'%-
10" by locking the free spectral range of a Fabry—Perot
interferometer to a rf frequency standard.

The Fabry—Perot interferometer, as commonly defined,
consists of two reflectors which face each other and are
separated from one another by a distance d. The separation
may be variable, serving to tune the interferometer. With
the development of lasers, our knowledge® of the properties

917 Am. J. Phys. 55 (10), October 1987

of curved-mirror Fabry-Perot resonators has greatly in-
creased.

We have devised a simple method for students to observe
features of the Gaussian beam modes supported by a
Fabry-Perot interferometer. The key to our approach is
that the radiation source is a microwave sweep oscillator
rather than the usual tunable laser. Since the beam spot size

parameter scales as JA for fixed resonator dimensions, a
spot size of 0.2 mm at A = 600 nm increases to 5 cm at
A = 3 cm. The microwave range has several significant ad-
vantages over the optical range for the experiments.

(1) A spherical aluminum mirror that is figured to A /
300 or better can rather easily be turned on a lathe. It is
readily polished to sufficient smoothness that scattering
loss is completely negligible.

(2) By using a metal grid as a flat partial reflector, a
freely propagating Gaussian beam is coupled out of the
cavity. The intensity profile of the generated beam can be
probed external to the cavity.

(3) In contrast to the optical range, easily operated mo-
nochromatic tunable rf oscillators are commercially avail-
able. We have borrowed an X-band plug-in unit of a Hew-
lett—Packard model 8690A. BWO system from the
Department of Electrical Engineering at our school, but
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