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Fig. 7. Variation of the analemma due to precession of the Earth’s polar
axis. 8, = 270°, 315°, 360° (0°).

6, = 315°, which will next occur in the year 4305 A.D., we
see the asymmetry increase. At 8, = 360° (0°) correspond-
ing to the year 7530 A.D., perigee and the vernal equinox
coincide and the analemma shows inversion symmetry.
The appearance of the analemma at other epochs can be
found by using the symmetries cited earlier.

V. CONCLUSION

In this work we have investigated the important practi-
cal problem of the trajectory of the subsatellite point for
geosynchronous satellites. The problem is treated using
vector geometry and orbital dynamics in a form familiar to
those with a background in physics rather than spherical
astronomy. The trajectories are obtained by a transforma-
tion from the inertial frame in which the Keplerian equa-
tions are cast to a rotating frame fixed in the Earth. Sym-
metry of the trajectories under reflections in the longitude
of perigee are discussed and are seen to make all trajectories
obtainable from a single quadrant of this parameter.

The formalism developed can be directly applied to ac-
count for the appearance of the analemma. The analysis
shows the intimate connection between the appearance of
the analemma and the parameters of the Sun’s apparent
path about the Earth. In particular, the formalism permits
us to see the variation of the appearance of the analemma
due to precession of the Earth’s polar axis.

In addition to explaining these phenomena with math-
ematics accessible to undergraduates, this work also shows
the connection between two not obviously related phenom-
ena: geosynchronous satellite orbits and the analemma.

ACKNOWLEDGMENT

The author would like to thank his colleague Dr. David
H. Bruning for several very useful discussions.

'P. Bielkowicz, AIAA 1. 4, 2190 (1966).

R. N. Mayall and M. W. Mayall, Sundials (Sky Publishing Co., Cam-
bridge, MA, 1973), 2nd ed.

3CRC Standard Mathematical Tables, 26th ed., W. H. Beyer, ed., pp. 316
and 319.

“The 1984 Astronomical Almanac, U. S. Government Printing Office,
Washington, D. C.

*See also, B. M. Oliver, Sky and Telescope, July 1972, p. 20.

Quantum mechanics of a chargeless spinning particle in a periodic magnetic

field: A simple, soluble system
Miguel Calvo®

Facultad de Fisica, Pontificia Universidad Catélica de Chile, Casilla 6177, Santiago 22, Chile

(Received 10 February 1986; accepted for publication 30 July 1986)

The Schrodinger equation for a spin-} neutral particle with a magnetic dipole moment interacting
with a helical periodic magnetic field of arbitrary strength and period is solved exactly. The
solution is easily obtained by exploiting the symmetries of the Hamiltonian and it is expressed in
terms of elementary functions. Several interesting physical aspects of the solution emerge. The
behavior of the spin, the group velocity, and the effective mass tensor are obtained, yielding some
novel and riontrivial results. Because of the mathematical simplicity, this problem is particularly
suitable for an elementary graduate course in quantum mechanics.

L INTRODUCTION

The most outstanding quantum mechanical behavior of
matter is, even for the most simple system, somewhat ob-
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scured by the mathematics. Perhaps with the sole excep-
tion of a free particle in a square well, the most commonly
studied systems such as the harmonic oscillator, the hydro-
gen atom, or charged particles in constant electromagnetic
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fields require, at some stage, the use of either special func-
tions or very formal operator manipulations in order to
extract the relevant quantum properties from the math-
ematical solutions. An even worse situation is found in
some other physically interesting systems of greater com-
plexity such as an electron in a periodic lattice. This prob-
lem usually defies an exact mathematical solution and,
therefore, one must resort to elaborate approximation
methods to exhibit the physical content of the theory. The
concept of energy bands, group velocities, or effective
masses can only be elucidated after several approximations
and often intrincate calculations.

Among the great variety of mathematical approaches

which have been developed to study such problems, a
prominent role is played by the systematic use of the sym-
metries of the system. In fact, it has provided a very elegant
and powerful technique which not only has greatly simpli-
fied the computations leading to the solution, but has also
yielded great physical insight. Moreover, it has established
the fundamental link between symmetries and conserva-
tion laws. In the particular case of a particle moving in a
periodic potential, the Bloch theorem which results from
the discrete translational symmetry of the interaction, in-
troduces an important simplification in the energy eigen-
value problem and sets the stage for various mathematical
approximations.

It is the purpose of this paper to study a system within
this category. The important difference is that it can be
solved exactly by elementary methods. We will consider an
electrically neutral spin-} particle with a nonvanishing
magnetic moment and interacting with an external helical
magnetic field. Because of the simplicity of the resulting
sigenvalue problem, we will be able to derive some of the
physical concepts mentioned above in an exact and simple
way, thus avoiding the use of complex mathematics. More-
over, the great power of the symmetry principles and the
corresponding conservation laws will be corroborated once
again. It should be mentioned at this point that this prob-
lem is not only of academic interest. In fact, several real
systems lead to an eigenvalue equation of this form. In par-
ticular the motion of slow neutron interacting with the
magnetic field produced by some rare-earth elements can
be described, to a good approximation, in this form.’

It should be mentioned, however, that this problem rep-
resents a somewhat exceptional case of a particle interact-
ing with a periodic field. In fact, its solution does not exhib-
it the typical feature of periodic potentials, which is the
appearance of energy bands separated by gaps. As will be
shown below, this fact is a consequence of the special sym-
metries which characterize this problem but which, on the
other hand, make the mathematical solution so simple.

II. THE EIGENVALUE EQUATION

Let us consider a chargeless spin-} particle of mass m and
magnetic moment u, interacting with an external helical
magnetic field given by

cos Ky
Bp)=58,| 0 |, (D
sin ky
where B, is the constant field strength and x = 27/A with
A being the constant helix pitch (see Fig. 1). Some exam-

ples of materials which produce these kind of fields are
discussed in Ref. 1. The corresponding eigenvalue equation
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Fig. 1. The helix represents the magnetic field B at each (x,z) plane as a
function of . A is the period of the field.

is

Hy(x) = Eg(x), (2)
where
H = (p?/2m) — pooB (3)
and
B ¢(1)(X)) 4
P(x) = (1/}(2)(]() , (4)

o = (0,,0,,0,) are the Pauli matrices. In order to obtain
the eigenenergies and eigenfunctions of Eq. (2) we note
that the Hamiltonian is independent of the x and z coordi-
nates and, consequently, the canonical momenta conjugate
to them are conserved

[5..H]=[p..H]=0. (5)
This implies that the eigenfunctions #(x) can also be eigen-
functions of p, and p,

P(x) = " () = P (), (6)

where p, = (p,,0,p,) are the corresponding eigenvalues
and ¢(y) is an unknown spinor wavefunction. Substituting
Eq. (6) into Eq. (2) one easily derives that

# d2 _ [sinxy cos Ky])
<_EE HoBo cosky —sinky $0)
2
=(E~5%)¢(y). M

At first sight it would seem that this system of coupled
eigenvalue differential equations of Mathieu type? do not
admit solutions which can be expressed in terms of simple
functions. Let ys show that this is not the case. In fact the
symmetries of H will allow us to obtain the spectrum in a
very simple way. It is obvious from Eq. (1) that the system
is not invariant under arbitrary displacements along the y
axis except by A or multiple periods of it. There is, how-
ever, a combined operation consisting of an arbitrary dis-
placement followed by an appropriate rotation aroynd the
y axis which constitutes a continuous symmetry of H. This
is equivalent to “screwing” the helix along the y direction.
It is then easily shown that this transformation is generated
by an operator p which

(.81 =0 (®)
with

p =5, + (#x/2)0,. ¢))
Furthermore, it is obvious that

[p:Dx] = [P:D.] =0 (10)
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and, therefore, we can also diagonalize

po(y) =p'd(»), (11)
where p' is the eigenvalue. Let’s write

¢(y) =eip’y/ﬁ$p' (y). (12)
Substituting Eq. (12) into Eq. (11) we obtain

5 d = fie =

lﬁ5¢pr (y) =Tﬂy¢pr (y) (13)

This equation has the same form as a time-dependent
Schrodinger equation for a two-level system and is easily
integrated

by () =™V, (14)
where d,(p') is a constant but undetermined spinor. Thus
combining Eqgs. (6), (12), and (14) we obtain

¢(X) =eip-x/ﬁe(iky/z)ay‘zo(p:), (15)

where p = (p,,p',p,). In order to determine d,(p’) in Eq.
‘( 15) we must substitute Eq. (15) for#(x) in Eq. (2) yield-
ing

ALY
[p + (—2—) —2mE + fikp'a, — 2m uoBoax]

7 (1)( '

p)

)
67 (p")

This equation admits nontrivial solutions provided its se-

cular determinant vanishes. This requires that

1 i \?
E ’—|— :.—[2 (.—)
@ £) > P+ 5

(16)

+ [(Aip’)? + (2m,uoBo)2]”2} ,

and the corresponding eigenvectors can be written as

(17)

$6:’(p) =eXP(l’—9L‘2D-lox)ni, (18)

where
1 0)

1]+-<0).and7)_—(1 . (19)
The angular parameter 6(p') is given by
tan 90 = ficp’ .

2 [(Fixp')? + (2m p24B5)?1'/2 + 2m poB,
(20)

This function is depicted in Fig. 2. Finally the normalized
energy eigenfunctions can be written as
| - )

Y 4 (X) =\/——7V—_—e" D, (kp)D [0(p") 17 » @2n
with N a proper normalization factor and where D, and D,
are 2 X2 rotation matrices around the x and y axes by an-
gles ky and 6(p'), respectively.

The physical behavior of the spin of these eigenstates is
easily derived from Eq. (21). Clearly for all states the spin
rotates as a function of y in the same way as the magnetic
field. However, for a given p’ #0 the spin and the B field are
not parallel. Actually the former is rotated by an angle
6(p’) in the (B,y) plane for the + case and by 7 — 8(p’)
for the — case.

It is instructive to study some limiting cases of the spec-
trum Eq. (17). Let us first consider the x—Q limit. In this
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Fig. 2. The angle 6(p') as a function of p’ is shown. This angle measures
the relative orientation of the spin with respect to the B field. For p’' =0
the spin becomes parallel or antiparallel to B. For p’— «o the spin is per-
pendicular to the magnetic field.

case we find

2
E(p, +)—>2 + puoB, (22)
2m

in accordance with the constant field expression. On the
other hand, the limit B;—0 and x#£0 gives

2
E(p, +) =-——1 [p,zc + (p' i——ﬁx) +pf]. (23)
2m 2

This expression does not coincide with standard free parti-
cle result. This apparent discrepancy is related to the non-
uniqueness in the choice of a complete set of commuting
operators. Normally the operator p, is chosen in this set.
However, we may also choose p rather than p,. Then the
free particle energy spectrum is parametrized differently.

One further aspect of the spectrum is worth noticing. It
is well known that particles moving under the effect of an
arbitrary periodic potential have energy bands separated
by gaps. In the present case, we also have a periodic interac-
tion, however, we have not obtained any discontinuities in
E, ., . The reason for the absence of gaps is related to the
continuous symmetry of H generated by p, which is absent
in the general case. We can understand this as follows: In a
periodic potential the origin or the bands arises from the
fact that there are regions in which the wavefunction is
being strongly reflected. This occurs at those points in
which the forces are stronger (namely, where the potential
has a maximum derivative). These regions will occur with
the same periodicity as the potential. Therefore, when the
wavelength of the particle is twice the distance between
these points, the interference between transmitted and re-
flected waves will produce standing waves and this gives
rise to the energy gap. This situation, however, does not
arise for a helical magnetic field. In this case, the force
acting on the particle will have a constant strength every-
where along the difference of motion and consequently no
standing waves and no bands.

Let us next evaluate some physically important proper-
ties of the system. We will first consider the group velocity
of the eigenstates Eq. (21). Clearly the velocity along the x
and z axes coincides with that of a free particle. On the
other hand, the velocity along the y axis shows a very differ-
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ent behavior
(v,) = f W 02, . 0

' 2
=P_(1 " (#ix) ) (24)
m 2[ (Fixp')? + (2m poB,)*]1"/?
This result could be also derived from the general formula
( v, ) = 3E /dp’. The most interesting feature of Eq. (24) is
that, for a given p’, the velocity depends on the spin orienta-
tion relative to the magnetic field. In fact, we note that for
the + state the resulting velocity is always larger than that
of the state with the same p’ but in a constant field. For the
— state, the situation is just the opposite. Moreover, we
also find that if (%ix)?/2m > 2 B, there is a range of p’ for
which particles with opposite spin orientations move in op-
posite directions.
Let us finally consider the effective mass. This is defined

as the tensor

32F 1-1 m 0 0 ~
M=) =lo men o), e
P: OP; 0 0 m
where i)j = x,y,z (with p, = p’), and
aZE -1
ot -[25
+ p) ap12
2
=m/f1+ (2m p2080) O 6)
2ﬁx[p’2+( 2”1#030)2]3/2
#ix

Clearly m* is always smaller than m but is, nevertheless,
always positive. In contrast, m* is always larger than m if
2 By > K2 2m. I 7k /2m > 2 uoBo,m* . will be infinite
for some py; for p’ < p; the effective mass m*  is negative.
This concept is particularly useful in studying the response
of the particle to the influence of an external electric field
provided the validity of the semiclassical approximation® is
justified. Obviously a neutral particle is not affected by an
electric field. Nevertheless it can be easily shown that the
results derived in this section are equally valid for charged
particles provided we limit ourselves to the case p, = 0 (see
Refs. 1 and 3).

Let us conclude by noting that this eigenvalue problem
arises in other physical contexts.** Moreover, the discus-
sion for higher spins follows along the same lines.’

*) Permanent address: Centro de Fisica. Instituto Venezolano de Investi-
gaciones Cientificas. Apartado Postal 1827. Caracas 1010-A, Venezu-
ela.
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The similarities and differences between diffraction from single slits and scattering from single
fibers can be dramatically demonstrated by some simple experiments. Geometrical properties
such as fiber size, cross section, tilt, and nonuniformity all contribute to the intricate detail of the
diffraction pattern. An examination of the role of the complex refractive index, polarized light,
and geometrical effects in scattering phenomena will contribute to a deeper understanding of the
interaction of light with small apertures and particles.

I. INTRODUCTION

Light scattering from fibers is an active research area in
optics motivated by interest in asbestos fiber pollution, op-
tical pipes, and fibers for communication and natural phe-
nomena such as halos due to ice crystals. Although neglect-
ed in most traditional optics courses, the nature of light
scattered from fibers is easy to demonstrate and strikingly

555 Am. J. Phys. 55 (6), June 1987

similar in concept to the well-known phenomena of single-
slit diffraction. Single-slit diffraction is a basic experiment
which demonstrates the wave nature of light and the role of
optical size and wavelength in forming geometrical images
and diffraction patterns. The experimental variations are
limited however since a “perfect slit” is completely charac-
terized by a single parameter, its width W. More param-
eters are needed to characterize fibers and consequently
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