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The one-dimensional Schrodinger equation is solved asymptotically for scattering of a particle by
a potential barrier and for bound states of a potential well, when the potentials change little in a
wavelength. Both solutions are represented uniformly in space, rather than nonuniformly as in
the WKB method. This avoids matching expansions and using connection formulas. The
scattering solution and the complex reflection and transmission coefficients are also uniform in

the particle energy.

L. INTRODUCTION

One-dimensional scattering and bound state problems in
quantum mechanics are often solved approximately by the
WKB method. This method has an intrinsic defect which
makes it inconvenient or difficult to use. It is that different
expressions for the solution must be used on each side of a
turning point, and they must be matched to a third expres-
sion which is valid near the turning point. Thus in a typical
bound state or scattering problem with two turning points,
five different expressions for the solution must be used and
matched to one another.

We shall show how to overcome this defect by using one
spatially uniform asymptotic representation of the solution
instead of the WKB five-part nonuniform representation.
For scattering the spatially uniform representation and the
corresponding complex reflection and transmission coeffi-
cients are also uniform in the energy of the incident parti-
cle. That is, they are valid for the particle energy above, at,
or below the peak of the potential. These results are not
available in textbooks and they do not appear to be given in
the literature either.

To gain these advantages one must use Hermite polyno-
mials for bound state problems and parabolic cylinder
functions for scattering problems. Hermite polynomials
are already used to treat bound states of a harmonic oscilla-
tor, and the present method provides an additional use for
them. Parabolic cylinder functions can be used to exactly
solve scattering by a parabolic potential barrier, and then
used for the approximate solution of scattering by any po-
tential. In fact, in Sec. IT we shall treat first the bound states
of a harmonic oscillator and then those of a general poten-
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tial. Similarly, in Sec. III we shall treat scattering by a para-
bolic potential barrier and then in Sec. IV we shall treat
scattering by a general potential.

The idea of using uniform representations was intro-
duced by Langer’ in 1934, and in a modified form by Cher-
ry? in 1950, to treat problems with one simple turning
point. McKelvey® and Kazarinoff * applied it to a second-
order turning point and to two simple turning points, re-
spectively. All these authors proved that the uniform rep-
resentation is asymptotic to the exact solution as the
wavelength divided by a typical scale length of the poten-
tial tends to zero. Their results have been refined and ex-
tended by various authiors, especially Olver.> The formal
aspects of the method have been described by Miller and
Good,® and developed futher by Lynn and Keller,” Zau-
derer,® and Anyanwu and Keller.’

In Sec. II we shall write the Schrodinger equation in the
form

Y + [E—V(x)]¢=0. (1)

Here ¢(x) is the wavefunction E = 2mE'/h 2 where E' is
the particle energy, m is its mass, 4 is Planck’s constant
dividedby 27, and V(x) = 2mV¥V(x)/h? where V'(x) isthe
potenti2a1 energy function. In Secs. ITI and IV we shall set
E=k">

IL, BOUND STATES OF A POTENTIAL WELL

Let us begin with the harmonic oscillator, for which we
write the potential as (x) = x2/4 so that Eq. (1) becomes

Yo + [E— (x*/8) 1y =0. (2)
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This equation has a solution which vanishesatx = 4 oo if
and only if E = n + }, where n is a non-negative integer.
Then # is given in terms of the Hermite polynomial
He, (x) by

P(x) =e~ VY He, (x). 3

For a general potential well we write the solution ¢(x) of
Eq. (1) in the form

¢(x) =¢;1/2e-(1/4)¢2(x>Hen [¢’(x)] (4)

We now substitute Eq. (4) into Eq. (1) and use the fact
that expression (3) satisfies Eq. (2) with E = n + }. Then
we find that (4) satisfies Eq. (1) if the new function @(x)
satisfies

P2n+i— (@O =E—V(x) +9 (9 ),
(5)

We now make the assumption that ¥(x) changes very
little in the distance 27E ~/2, which is the wavelength.
This implies that @, is also slowly varying on the wave-
length scale. Therefore the last term in Eq. (5) is negligible
compared to the other two terms, so we omit it and Eq. (5)
becomes

Piln+1— (p%/8)] =E— V(x). (6)

The smallness of the omitted term can be demonstrated by
a formal asymptotic analysis in which the wavelength di-
vided by the scale length L of ¥(x) is introduced as a small
parameter. Since we have omitted this small term, Eq. (6)
is not actually an equality, but rather it is an asymptotic
equality. The difference between the two sides tends to zero
asthe small parameter 1/E /2L tends to zero. Consequent-
ly the same is true of the rest of the equations of Sec. II,
since they follow from Eq. (6).

We next suppose that £ = ¥(x) at exactly two points, x,
and x,, with x, < x,. These are the classical turning points,
and we assume that they are both simple roots. Then the
right-hand side of Eq. (6) vanishes at these two points so
the left-hand side must also vanish at them. Therefore we
shall require that

Pxo) = =2(n+ 1'% @lx) =2(n+HY2 ()

One of these two conditions may be viewed as an initial
condition for ¢(x), and the other as a condition to deter-
mine E.

Now to solve Eq. (6) we take the square root of each side
and then integrate from x, to x, using Eq. (7) at x,. We can
integrate the left-hand side explicitly to obtain

1/2
—1—-<p(n + 1_ 2——) + (n + i)sin*l

’ e
2 4 2(n + 1/2)M?

4 2
I\7r ~ 1/2
+ (n +-—)—-=f [E— V(x)]V2dx. (8a)
2/2 Uy
Finally we set x = x, in Eq. (8) and use Eq. (7) atx, to get
(r+5)r=[1E- v e 9
2 %

Equation (9) is an equation for the nth eigenvalue E. Then
Eq. (8) determines g(x) and Eq. (4) gives the eigenfunc-
tion (x).

In order to solve Eq. (8) explicitly we consider first the
casex»x,. Then E < ¥(x) so the right-hand side of Eq. (8)
isimaginary and large in magnitude. We can satisfy Eq.(8)
if  is large and positive, for then the left-hand side is ap-
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proximately ip /8, and Eq. (8) yields
oHx) =8| [V(x) —E1"?dx. (8b)
x4
When this result is used in Eq. (4) it gives an exponentially
small value for ¥(x).

For x«x, we find instead that ¢ is large and negative,
and that Eq. (8b) holds with the integration from x to x,.
Then Eq. (4) again yields an exponentially small result for
¥(x). When x lies between x, and x,, ¢ (x) is between the
values given in Eq. (7). It can be found by solving Eq. (8a)
numerically.

ITI. SCATTERING BY A PARABOLIC POTENTIAL
BARRIER

We now consider the parabolic potential barrier, which
we write as V(x) =k? +a — x*/4. We denote 9(x) by
E(a,x); then Eq. (1) becomes

E, (ax) + [(x*/4) —a]E(ax) =0. (10)

The constant a equals the maximum value of the potential
minus the particle energy k%

Equation (10), like Eq. (2), is called the parabolic cylin-
der or Weber equation and its solutions are called parabolic
cylinder or Weber functions. These functions have been
studied extensively and tabulated, e.g., in Abramowitz and
Stegun,'® Chap. 19. One of the standard solutions, E(a,x),
behaves like an oscillatory exponential function with in-
creasing phase for x large and positive. Thus it represents a
wave traveling to the right in this range, so we may think of
it as the transmitted wave. To determine its behavior for
negative values of x, we use Eq. (19.18.3) of Ref. 10:

(1 +e™)V2E(a,x) = e™E *(a.x) +iE*(a, —x). (11)

We take the complex conjugate of Eq. (11) and then solve
for E(a, — x) to get

E(a, — x) =i(1 + &™) 2E*(a,x) — ie™E(a,x). (12)

For x>0, Eq. (12) determines £ for the negative argu-
ment — x as the sum of two waves. We shall see in a mo-
ment that in Eq. (12) E *(a,x) represents a wave traveling
to the right and E(a,x) represents a wave traveling to the
left, so we can call them the incident and reflected waves,
respectively. The absolute value of the ratio of these two
waves is |R |, where R is the complex reflection coefficient.
Thus we have from Eq. (12),

IR!:__em/(l_‘_lea)l/Z. (13)

Similarly, the absolute value of the transmitted wave
E(a,x) divided by the incident wave is | T"|, where T'is the
complex transmission coefficient. We see from Eq. (12)
that

IT|=1/(1 +&™)"2 (14)

These two results show that |R |> + |T'|* = 1, which ex-
presses conservation of probability.

To examine the solution in more detail, we write it in the
following form for x» |a| [Ref. 10, Eq. (19.21.1)]:

s e+ )] ()

2
Xexp[i(%———alnx)l, x>|al. (15)
Here ¢ is a real constant defined in terms of the gamma
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function by

¢=argI'(1/2+ia), ¢=0 for a=0. (16)
The function s(a,x) tends to unity as x— + oo:
s(ax) =14+ 0(1/x%), x—+ oo. (17)
By using Eq. (15) in Eq. (12) we get
E(a, —x) =i(1 + &™)'/? exp[ - l(% + %)]s"(a,x)( )1/2 exp| — t(xTZ —aln x)]
2
—je™ exp[i(% + %)]s(a,x)(%)m exp[i(%— —aln x)], —x< —|al. (18)

Equation (15) shows that the phase of E increases with x
for x»|a|, so E does represent a wave traveling to the right
there. Similarly the first term in Eq. (18) has a phase which
increases as — x increases so it is also a rightward traveling
wave, as we stated above. The second term is a leftward
traveling wave. However, the phases do not become linear
in x for large x, and therefore the waves do not tend to free
waves. This is to be expected because the parabolic poten-
tial does not decay, but instead grows at infinity. Therefore
we cannot define complex R and T in the usual way, but we
can define |R | and |T |, as we have shown above.

IV. SCATTERING BY A GENERAL POTENTIAL

For a general potential we write the solution #(x) of Eq.
(1) in terms of E(a,x) in the form

Y(x) =9 ;' E[a,p(x)]. (19)
Here @(x) is a function to be determined so that y(x)
satisfies Eq. (1). Substitution of Eq. (19) into Eq. (1), and
the use of Eq. (10), shows that ¢ is a solution if ¢(x)
satisfies

Qi@ —al =k’ —V(x) + ¢ Y (@7 e-

(20)
When V(x) is slowly varying, and therefore ¢, (x) is also,
we neglect the last term in Eq. (20) and obtain

P2l(p¥/4) —al =k*— V(x). (21)

As was the case with Eq. (6) in Sec. II, Eq. (21) isnotan
equality but instead the two sides become asymptotically
equal as 1/kL tends to zero. Here L is a typical scale length
of the potential V(x) and & is 27 divided by the incident
wavelength A. Thus Eq. (2) is more correct the smaller the

J

|

ratio A /27 L. The same is true of all the subsequent equa-
tions of Sec. IV, since they all depend upon Eq. (21).

We now assume that for k > <max ¥(x), there are two
simple roots x, and x, of k > = V(x), with x, < x,. At these
turning points the right-hand side of Eq. (21) vanishes, so
to make the left side vanish there we require that a > 0 and
that

P(xo) = —2a"%  @(x,) =2a'% (22)

When k 2 = max V(x) then x, = x, is a double root or sec-
ond-order turning point, and Eq. (22) still applies with
a=0.

When & 2> max V(x), we assume that ¥ (x) is analytic
in some strip containing the real axis, and that V(x) = k2
has a pair of complex conjugate roots in this strip. If there
are more than one pair we choose that pair closest to the
real axis and call them x, and x, with Im x, < 0. Then we
require a < 0 and we still impose Eq. (22).

We now solve Eq. (21) for a> 0 by taking the square
roots of both sides and then integrating from x, to x> x,.
Upon using Eq. (22) we obtain

fx[kz— Vix)]Y2dx

1 + (@2 —4a)'?
=T¢(¢2_4a)1/2 ah‘¢ (?;'al/z ) , x>x,,
2
~¢T—aln¢+%(lna— 1), x>x,. (23)

The second form of Eq. (23) follows from the first because
@>a'/? when x»x,. To find ¢ for x < x, we again take the
square roots of both sides of Eq. (21) and integrate from x
to x, to get

X0
f [k2—V(x)]Vdx = ——%¢(¢>2—4a)”2—aln —

2

~-¢;——aln( —@) +%(lna— 1), x<x,. (24)
For x between x, and x, we obtain
L[V(x) —k2]”2abc=-§(4a—¢2)”2+asin"2al/2 +-1;—a, Xo<X<X,. (25)

It should be noted that Egs. (23)-(25) for ¢(x) are just different forms of one single equation which has been written in
different ways for convenience.
By setting x = x, in Eq. (25) and using Eq. (22) we get an expression for a:

1Ta=J‘xl[V(x) — k2% dx. (26)
X0
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This completes the determination of the solution ¥(x). Itis given by Eq. (19) with@(x) given by Eqs. (23), (24), or (25) and
with a given by Eq. (26). It was derived for k 2 < max V(x), in which case a > 0, but it also holds for k> = max ¥(x) when
a = 0. The changes needed when k 2> max ¥(x) are derived in the Appendix.

The asymptotic form of ¢(x) for x»x, is obtained by using Eq. (15) for E with ¢ determined by the second form of Eq.
(23). This yields

¢(x)~( 2 )llzexp[iUx[kz—V(x)]”zdx+%+%—%-ln%)], x>x,. 7N

To calculate g, /2 we differentiate the second form of Eq. (23), neglecting a/@, and we obtain @@, /2~k provided that
V(x) tends to zero as x— o . Then we add and subtract k to the integrand in Eq. (27), and we can write the result in the form

x

P(x) ~k ! exp[i(r{[kz— V2 —kMdx+ k(x—x) + 2+ 7Bl xsx,

2 4 2 e

(28)
The upper limit in the integral has been changed from x to oo, which is permissible if ¥(x) tends to zero fast enough for the in-

tegral to converge. In the same way, we use Eq. (18) for £ and Eq. (24) for ¢ to obtain
Xo
Y(x) ~ik ~1(1 4 &™) 1/2 exp[i[ —f {[k? = V(x)1"? — k}dx + k(x — x,) — (% + %) + %ln i”
fw e

— ik ~lem™ exp[i(f ’ {[k?—V(x)]1"? — k}dx — k(x — x;) +-§—+%—iln %)], X €X,. 29)

The reflection coefficient R is the ratio of the coefficient
of e~ ** to that of e** in Eq. (29), which is

R= —iexp[ma + ip — ialn(a/e)]
(1 +e21m)1/2

X exp 21'(J‘xo {[k2 = V(x)]"2 — k}dx + kxo) .

(30)

Similarly T is the ratio of the coefficient of e~ in Eq. (28)
to that of ¢** in Eq. (29):

T= explip — iaIn(a/e)]
(1 + e21ra)1/2

Xo
X exp iU {lk2=V(x)]"? — k}dx

—k(x, —x5) + fw{[kz —V(x)]V?— k}dx).

3D
From these results we see that Eqs. (13) and (14) still hold
with 7a given Eq. (26), and that |R | + |T|* = 1.
The phase of T can be written in the following form,
using Eq. (16) for ¢:

argT=J {Re[k? - V(x)]Y? — k}dx
1 , a
+ arg I‘(—+m) —aln(—). (32)
2 e
The phase of R is
"Xo
arg R =2I {lk? = V(x)1Y? — k}dx
+ 2kx, + arg l‘(—l-+ia) -z —aln(i).
2 2 e

(33)
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We note that argl'(}+ia) =0 for a=0 and
arg T'(} + ia) ~a log(a/e) for a real and |a|> 1. The term
2kx, in Eq. (33) shows that arg R depends upon the loca-
tion of the origin of x, so it is not a property of the potential
alone. However, arg T depends only upon ¥(x) and k.

When k 2> max V(x), Eqgs. (30)—(33) still hold with x,
and x, both replaced by Re x,, and with a given by

Im x,

ma = —f [k2 = V(Rex, + is) 1" ds. 34)
—Imx,

The integral is real and positive, so a is real and negative. In

Eq. (32) the sign Re can be omitted since k 2> V(x) for all

real x. These are shown in the Appendix.

V. CONCLUSION

We have now shown how to solve the one-dimensional
Schrédinger equation for potentials which change little
within a distance of one wavelength. This is exactly the case
for which the WKB method was devised. However, that
method requires the use of many different representations
of the solution in different regions of space, with connec-
tion formulas to match them together. In each of the pres-
ent examples it would require five such representations. By
contrast, the uniform method we have presented requires
only one representation.

In the bound state problem the result (9) for the eigen-
values is the same as that given by the WKB method. But
the present derivation is simpler. Furthermore, the repre-
sentation (4) for the wavefunction is valid for all x.

In the scattering problem the results (30) and (31) for R
and T hold for all incident particle energies k 2. These re-
sults also contain the phases of R and T, which do not seem
to be given elsewhere. In addition the representation (19)
for (x) holds for all x.

Suppose we wanted to find the bound states of a double
well, or to treat scattering by a double barrier. In both cases
there would be four turning points, and the WKB method
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would require nine representations of the solution. By us-
ing the present method, it would be possible to use just one
representation if one had available special functions with
four turning points. However, such functions have hardly
been studied, so that is not feasible. Instead one could use
two representations, each covering a region containing two
turning points, so parabolic cylinder functions would suf-
fice. Of course, they would have to be matched together.
This procedure could be extended to more complicated po-
tentials,
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APPENDIX

When k2> max V(x) and a <0 all three forms (23)-
(25) of the integral of (21) hold for all x in the region of
analyticity of V(x). The asymptotic forms hold for
|Re x|>|Re x,|. Upon setting x = Re x, + is in (26) we
obtain

Im x,
ﬂa=—f [k —V(Rexo+is)]?ds.  (AD)

~Im x,
Because ¥(z) is analytic and real for real z, its power series
about any real point has all real coefficients. It follows from
this that V' *(x + iy) = V(x — iy), which implies that the
real part of V' is even in p and the imaginary part is odd.
Then we find that the imaginary part of the integral in Eq.
(A1) is zero because the range of integration is symmetric
about the real axis.
To solve Eq. (21) for ¢(x) we just integrate from the
point Re x, on the real axis, and we obtain

,fx [k%2—V(x)]"*dx

=%_¢(¢2_4a)1/2_a1n[¢+ (¢2_4a)l/2] —®

2
~%—a1ﬂ¢+%lﬂ-‘—1——¢, @ |>]a|. (A2)
e

Here P is defined in terms of ¢, = ¢(Re x,) by

® =lpy(p; —4a)'? —aln[@, + (@3 —4a)'/?].
' (A3)

The value of @, can be found by integrating Eq. (21) from
xo, where @ is known, to Re x,,.

When the second form of Eq. (A2) is used in (19) for x
large and positive, it yields Eq. (27) with x, replaced by
Re x, and with the additional phase ¢. Then Eq. (28) fol-
lows with these same changes. When the second form of
Eq. (A2) is used in (19) for x large and negative, Eq. (29)
results with x, replaced by Re x, and with the extra phase
P in each term. This phase cancels out of R and 7, which
are still given by Egs. (30) and (31) with x, and x, both
replaced by Re x,,.
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A simple formula for combining rotations and Lorentz boosts

A. C. Hirshfeld and F. Metzger

Institut fiir Physik, Universitit Dortmund, 4600 Dortmund 50, West Germany
(Received 18 March 1985; accepted for publication 23 April 1985)

We present a simple formula which is helpful in understanding the result of combining two
Lorentz transformations, in particular two rotations or two Lorentz boosts. In the latter case the
Wigner little group rotation occurs naturally. The formulas for the resultant angle of rotation and
rapidity are generalizations of trigonometric addition theorems and of the relativistic law for

adding collinear velocities.

In their book on gravitation, Misner et al." recall how
pondering on the problem of finding the correct law for
combining rotations led Hamilton to the invention of qua-
ternions in 1843. They describe the problem as follows.
Consider a rotation of 90° about the z axis, followed by one
of 90° about the x axis. To what single rotation does this
operation correspond? If rotations combined like vectors
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the resultant axis of rotation would lie in the x-z plane and
the angle of rotation would be v2 X 90° = 127.28". Actually
the axis of rotation is in the (1, — 1,1) direction and the
angle of rotation is 120°. “What computational algorithm,”
ask the authors, “can ever reproduce a law of combination
of rotations apparently so strange?”

Up to the present day Hamilton’s quaternion calculus,
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