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a uniform force F is present,

[H,T) = [H,— Fx,T] = FaT. (5)
Hence, (2) becomes

d iFa

—(T)Y=—AT). 6

dt< ) P (T) (6)

The solutions of this are of the form
(T') = Tyexplik(t)al, N

where T, is time independent and where k(?) satisfies (1).
This completes that part of the proof that does not address
itself to the fact that a state with a single sharp value of &
remains a state with a single sharp value of &.

So far, k(¢) need be only a certain kind of weighted aver-
age of the wavenumbers actually present in the state under
consideration. To tighten up on the proof, we note that the
expectation value { 7"} is simply the weighted average of the
quantity exp(ika) for the different Bloch waves present in
the state under consideration. The quantity exp (ika) may
be viewed as a vector in the complex plane, whose endpoint
is on the complex unit circle. The weighted average of two
or more such vectors belonging to different reduced values
of k and hence having different endpoints on the circle nec-
essarily falls inside that circle. Hence we must have | 7| < 1;

the limiting value 7, = 1 occurs ifand only if that stateis a
single Bloch wave or a linear superposition of Bloch waves
belonging to the same reduced k. In this case, k(2) is the
reduced k, and we have shown that a state with a single
sharp value of k remains indeed a state with a single sharp
value of k.

This result holds independent of any interband transi-
tions: Because such transitions take place between states
that have the same expectation value of the translation op-
erator, a consideration of the time evolution of the latter
makes it unnecessary to consider interband transitions at
all.
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This paper presents new realistic models of many-body systems. They provide a good insight into
the dynamics of such systems as many-electron atoms, diatomic molecules, and various van der
Waals complexes. These models can be used as excellent illustrations of the important topics of

atomic and molecular physics.

L. INTRODUCTION

Exact solvable models of many-body systems are of great
importance in the comprehension of the dynamics of mo-
tions of real systems. They are also useful from the theoreti-
cal point of view as they allow us to test various approxi-
mate methods.

The models set forth so far have been simplified too
much to reflect even the principal features of the real sys-
tems. Most of them were based on the assumption of one-
dimensional motions of particles interacting via Dirac del-
ta function potentials. The models of such a kind were
proposed for a two-electron atom,'™ a diatomic mole-
cule,” a collinear three-body system,'® and a system of N
particles with equal interaction strength and equal
mass.''"""?

Three-dimensional, but rather unrealistic models of par-
ticles interacting through pairwise harmonic potentials
with zero equilibrium interparticle distance have been used
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in the discussion of the vibration-rotational states of van
der Waals molecules.'*'¢

In this paper we present a new class of three-dimensional
models of many-body systems. Under adequate parametri-
zation they can describe many-electron atoms, diatomic
homo- and heteronuclear molecules, and various van der
Waals complexes. These models reflect many features of
real systems very well and they also allow us to obtain new
information on many-body systems.

1I. MODELS AND SOLUTIONS

In the calculation of the electronic energy of atoms and
molecules, Gauss orbitals are commonly used as they re-
semble hydrogenlike orbitals, and their application signfi-
cantly simplifies the calculation of atomic integrals. Gauss
orbitals are the eigenfunctions of a three-dimensional har-
monic oscillator. Thus a model of a Coulomb system with
the attractive pairwise Coulomb potentials —r;' re-
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placed by the harmonic potentials 77 ; constitutes a good

qualitative description of the properties of the real systems.

Such a model has been considered by Kesner and Sinan-
oglu'” in the study of correlation effects in a two-electron
atom.

In our models the repulsive Coulomb potentials 7, ' are

also replaced by r; jz terms. Thus the Hamiltonian of our
models has the form

H=T+ V(A)+V(R), (1)
where
ﬁZ n
T= — — m; A, (2a)
2 i;l
yu — S ok (x— X;)% (2b)
(L, jed
and
V(R . z ki, (x; — xj)‘z, (2¢)

(i,))eR
where 4 and R are sets of pairwise attractive and repulsive
particles, respectively. x; = (x;, y;,z;) is the Cartesian
vector of the ith particle. For a given set of parameters
{m,,k,;} the transformation A of the vectors
{x,,%3,...,x,, } = X7 to the new vectors {r,,r,,....,r, } =17,
where r,, is the center of mass vector, can be found to be

r = Ax, 3)

such that the operators 7, ¥’ , and V'® take the diagonal
forms, i.e.,

n—1 n -1
T= — ﬁ;— 1#j_lAj - ?(ZI mi) A,, (4a)
i= r=
n-—-1
=S ke, (4b)
i=1
and
n—1
YR — 3 k (Rop2, (4c)

j=1
The last term in Eq. (4a) represents the kinetic energy
operator of the system as a whole in translational motions
and will not be considered any further.

In these new vector variables the Schréodinger equation

[H(ry,ry.r, ) — EY(r,ry.0r, ) =0 (5)

is separable. Thus the problem is reduced to the solution of
the set equations of the form

[ — (/28 + k[0r + K [Or7 % — B 14 (ry) =0,

(6)
where
Y(r o l, ) = nl:[: ¥ (r;) (7a)
and "
E= i:E, (7b)
=

These equations are easily solvable in the spherical coordi-
nates r; = (7;,0;,@;). Assuming ¢, (r;) as a product of the
radial and angular functions,

1A](rj) =%nl,ll(r])y(eji¢])’ (8)
we obtain the radial equations for the 5{’,,,_, , functions
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(henceforth we will drop the index ;)

[ # (d2 2 d A+2,uk‘R’/fi2)
—— — —— + —_——_— — —

2u \dr r dr r

+k""r2—E,,,,] R, =0, 9)
where

A=IU+1). (10)

The solutions of the above equations are well known'®:
'%n,l =Plexp( _P2/2)1F1(—n,/1+13;’[72), (11)

where |F, is the confluent hypergeometric function'® of the
variable p? defined as

PP =por/h, o= 2kP/u)' (12)
The eigenvalues E,, ; are

E,, =fwo2n+ 4 +3), (13)
where

A=[(4A + 1 + 8uk ® /)12 _11/2. (14)

Thus, if the transformation (3) exists, the solutions of the
Schrodinger equation (5) are given by the formulas (7a)-
(14).

II1. EXAMPLES
A. Example 1: Three-body systems

Here we present some important models of three-body
systems for which the transformation (3) exists. Let us
consider a stable system composed of three particles mak-
ing one pair of mutually repulsing and two pairs of mutual-
ly attracting particles. This system and its vectors X and
r = Ax, where

1 -1 0
A=|-m m 1], (15)
14! V2 V3
where
g =m;(m, '+‘mz)—1 (16a)
and
v, =m, (i mj) 1 (16b)
=1

are shown in Fig. 1. The vectors r; are the well-known
Jacobi vectors.”® The potentials ¥*’ and V® for this
model system are as follows:

VO =k g (%, —%3)2 + Ky (X, — X3)%, (17a)
VR =k, (x, —x,) 7% (17b)
Under the transformation (15) these potentials take the

Fig. 1. The Cartesian x; and Jacobi r; vectors for the three-body system.
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following forms:

P =D L kD2 4 2k e o1, (18a)
YR g Rp-2 (18b)
where
k Y‘) = k1,3 ﬁ% + k2,3 ﬁ%,
k §A) = k1,3 + kz,a’
(19)

k;.A) = k2,3 /—71 - k|,3 /72»
kiR =k,,.

The reduced masses i; in the operator T'[see Eq..(4a) ] are
defined by the equations

uil=mi+my
(20)
ps = (mi+my) " 4 my
We can see that for &k ;¥ = 0 the Hamiltonian is separable.
Equation & {*> = 0 has two solutions:

By=py kiz=kys; (21
and
By # o, kl,é/kz,s = [y/ Iy, (22)

The first solution defines the model of a two-electron atom
or ion (when m, = m, = m, £m;) and the model of a ho-
monuclear diatomic molecule ion (when m,=m,
$m, = m, ). The second solution defines the special model
of a heteronuclear diatomic molecule ion. Both solutions
can also specify models of van der Waals molecules such as
Ar XY with X,Y = N,0,C], etc.

B. Example 2: Four-body systems; a two-electron diatomic
molecule

Let us consider the model system shown in Fig. 2 (only
the vectors r; are presented). The operators V** and V*®
expressed in the vectors x; have the forms

V(A) = k1,3 (xl - X3)2 + k1,4 (Xl - X4)2
+ kyy (X5 — X3)% + kg (X, — X,)% (23a)
VR — k(X — %) 24 k(X3 —Xg) "2 (23b)

In the following we will take m; =m, and k,; = k;, for
i = 1,2. Under the transformation

1 -1 0 0
0 —
A 0~ 3 1 1 ’ (24)
~i =l 3 :
Vi V2 V3 Vs

Fig. 2. The model of a two-electron diatomic molecule.

180 Am. J. Phys., Vol. 54, No. 2, February 1986

the potentials ¥’ and V'® take the following forms:
VA =k D2 L kP72 + kP8 4+ 4k {Pr, -1y, (252)

VR = Bp=2 4 By -2 (25b)
where
k gA) = 2(kl,3ﬁ72' + k2,4/—7% ), k iR) = k1,2’
kP = (ki3 +ky4)72, kB =ky,, (26)
kgA) =4k éA)’ k;:A) = (k2,4/71 - k1,3ﬂ2)~
The reduced masses y; are given by the equations
url=m 4+ my,
uy t=myt+ml, (27

wyt=(m+my) "+ (my+my) L

The Hamiltonian is separable for k {*> = 0. This equation
has two solutions: fI, = fI,, which defines the model of a
two-electron homonuclear diatomic molecule; and &I, #f,,
which defines the model of a heteronuclear diatomic mole-
cule. Both solutions can also specify models of van der
Waals and hydrogen bound complexes such as (H,),,
(HF),, etc.

C. Example 3: Four-body systems; a three-electron atom

Let us consider the model system shown in Fig. 3. The
potentials 7' and F® expressed in the vectors x; have
the forms

3
Vo = 3 kg (% —x4)% (28a)
i=1
VR = ki, (%, — X,) 2+ kys(x; — x3)_2
+ kys (X, — X3) -2 (28b)

In the following we will take k;,=k,, k3 =k,,, and
m;=m, for i = 1,2,3. The transformation

1 -1 0 0
—1 -1 1 0
2 2
A= 1 1 1 —1 (29)
3 3 3
Vi V2 V3 Vs
gives the potentials ¥ and V% in the forms
Vi = k(37 + 473 + 18r3)/6, (30a)
VR = k1,2r1_2 + ks [(r— r/2)7?
+ (ry +1,/2) 7). (30b)
Fig. 3. The mode! of a two-electron atom.
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The reduced masses y; are

pr=m/2, p,=m/3, uy'=3m~'+m;'. (31)
For r,>r, we can write

v, £ 1/2|=r,
The simplified model with

VO =k, + 2k 352 (32)

is solvable and can be used as the model of a three-electron
atom with one highly excited electron.

It is also possible to construct various simplified models
of this kind: for example, a model of an atom interacting
with a diatomic molecule, a model of two interacting di-
atomic molecules, etc.

IV. DISCUSSION

The models of many-body systems presented in this pa-
per can describe atoms, molecules, and van der Waals com-
plexes. Many features of these systems are adequately repe-
sented in the models considered and will be examined in
subsequent papers. These models allow us to illustrate
many important problems of atomic and molecular phys-
ics.

The parameters m; and k, ;, which specify the models,
can be varied enabling us to analyze the connections
between the states of various systems. So far, only correla-
tion diagrams for the electron states of atoms and mole-
cules have been constructed. However, in such diagrams
the internuclear distance is treated as a parameter and not
as a dynamical variable.

It would be interesting to find out how the vibrational
states of a molecule arise from the atomic states. Our mod-
els enable a continuous change of parameters, which leads
to new model systems. For example, a three-body system

SOLUTION TO THE PROBLEM ON

with m, = my, and m, = m, = m, describes the He atom.
Changing m, from my, to m, and m, from m, tom,, we
transform the model of the He atom to the model of the H,;*
molecule. Thus, it becomes possible to construct correla-
tion diagrams of a new type.
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The three components of the dipole field in spherical
coordinates are

. = (o/4m) (2M /7 )cos 6,
By = (uy/4m) (M /r)sin 6,
B, =0,
where M = magnetic moment of earth, @ = co-latitude of

earth, and k = u, M /4.
The magnetic induction

B = (2k /r)cos Ba, + (k /r*)sin fa, + 0a,.
2 2
\/%cosze +k—6sin29 =%\/3 cos’@ + 1.
r
The magnetic energy
1

|B|=

U=— B2av,
0 ~volume
U=LJJ fB2r2 sin 6 dr dg do,
210 Jr Jo Jo
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PAGE 121
L] 2
U=2" "% 24 (3cos?6 +1)singdb,
280 IR, 6=0

U=4rk?/3ug Ry = puo M*/120R 3.
Determine M by using the dipole field at the equator:
Boo =1 #10~*T =p, M /47R 3 ,
where 4y = 47 * 10~" mks and Rz = 6.4 * 10° m,
M =47R % Byo/po = 8.74 % 1022 amp - m?.
Then,
U=u,M*/120R3 =9.7% 10" J = 230 MT,
where | MT = 4.2 % 10'°J.
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