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of mass was at radius 0.14 m, and radius of curva-
ture = 1.15 m. v

Finally, the anisotropy field H, in our model is propor-
tional to cos & and therefore its effect is reduced as a is
increased. This means that the applied field and the anisot-
ropy field in our model are inversely coupled. When
a = 7/2, H, disappears. That is, when the model is tipped
up to vertical, the curvature completely loses its effect on
the arms.

Since we could think of no reasonable way to include
temperature, this model represents only a single vertical
line of the phase diagram in Fig. 1. There is, as expected for
a first-order phase transition, a significant hysteresis at the
SF to AF transition, which in our model is due entirely to
friction. The model is fun to operate and very clearly dem-
onstrates the difference between a first-order and second-
order phase transition and gives considerable insight to the
common but not easily understood easy-axis Heisenberg
antiferromagnet.
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A damped harmonic oscillator can be modeled as a manifestly conservative system by replacing
the dissipative element with a string or transmission line of infinite extent. This conservative
system can be quantized in a straightforward manner using the standard techniques of canonical
quantization. The system may be used to illustrate various aspects of the quantum mechanics of a

particle interacting with a field.

L. INTRODUCTION

In a previous paper’ in this Journal a conservative model
for the damped harmonic oscillator was presented in which
the dissipative element or dashpot was modeled by a string
of infinite extent. This model was used to illustrate a num-
ber of concepts in classical and statistical mechanics such
as radiation damping, the Langevin equation, and Brow-
nian motion.

In this paper the system is quantized using the standard
techniques of canonical quantization.”? Since the system is
linear the calculations are simple and straightforward and
are carried out without making any approximations. This
conservative model of the damped harmonic oscillator
should have pedagogical value as an example illustrating
the quantum behavior of a discrete mechanical system cou-
pled to a field. In this paper attention will be drawn to how
the field modifies the ground state position probability dis-
tribution of the harmonic oscillator.

The approach to quantizing damped harmonic oscilla-
tors taken here is in the spirit of Senitzky* and Ford, Kac,
and Mazur® in that the damping is provided by a heat bath
of harmonic oscillators. A string or transmission line, satis-
fying a massless scaler Klein-Gordon equation, is a par-
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ticularly simple heat bath to quantize. For a critical review
of various other approaches to quantizing damped har-
monic oscillators the reader is directed to Ref. 6 by Dekker.
See also Ray’s article in this Journal.”

The system to be quantized is depicted in Fig. 1. In Fig.
1(a) a string of infinite extent is attached to the harmonic
oscillator’s mass. The oscillator is constrained to move
along the y axis via the guide G. As the oscillator’s mass
moves up and down waves are launched along the string. In
this manner the oscillator loses energy and its motion is
damped. The electrical analog, in which the charge stored
in the capacitor plays the role of the position coordinate of
the oscillator, is depicted in Fig. 1(b).

Since canonical quantization relies heavily on Lagran-
gians to provide the equations of motion and the momenta
canonically conjugate to the position variables, the Lagran-
gian mechanics of the damped harmonic oscillator will be
worked out in detail. The oscillator with a string of finite
length will then be quantized by solving for the normal
modes®® of the system and then introducing the creation
and annihilation operators associated with these modes.
The quantum mechanics of the damped harmonic oscilla-
tor is then obtained by taking the thermodynamic limit,
i.e., letting the length of the string become infinite.

© 1986 American Association of Physics Teachers 1133
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Fig. 1. (a) The damped harmonic oscillator in which the dashpot is mod-
eled by a string extending to infinity. The guide G restricts the oscillator’s
motion along the vertical direction. (b) The electrical equivalent where a
transmission line of infinite length simulates a resistor.

As an illustration, the ground state position probability
distribution for the damped harmonic oscillator of Fig.
1(a) will be obtained. This probability distribution be-
comes narrower as damping is increased.

Although the calculations here will be carried out with a
string of finite length, the limit of infinite length being tak-
en only in the final stages of the analysis, one can in fact
work directly in the infinite length limit as shown in Ref.
10.

II. LAGRANGIAN MECHANICS

In this section the Lagrangian mechanics for the damped
harmonic oscillator of Fig. 1(a) is reviewed. Since the sys-
tem under consideration has a distributed component, the
string, it is appropriate to work with a Lagrangian density.
Let y(x,z) denote the height of the string above the x axis at
position x and time ¢. Since the string is attached to the
oscillator’s mass, y(0,¢) is the position of the oscillator. The
Lagrangian will have the form

e[ e 22,
a ot

where .Z” denotes the Lagrangian density. The equations of
motion are obtained from the variational principle

6L =0, (2)
which leads to the Euler-Lagrange equation

g ( 9.7 ) n 9 ( 4.7 ) _aZ

at \3(dy/ar) dx \ d(dy/dx) dy
The Lagrangian density for the mechanical system de-

=0. (3)
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picted in Fig. 1(a) is given by

M ay)2 K 2]
v =s00)|M(2Y K
(x)[2(3t 2”7

A\> o [(dy\?
ol
+ *m[z o) ~ 2 \ox 4

where M and K denote the oscillator’s mass and spring
constant, respectively, p and o denote the string’s mass-
density and tension, respectively, §(x) is the Dirac delta
function, and 4 (x) is the Heavyside function
1 x>0
= . 5

by () {0 x<0 )
That Eq. (4) is the correct Lagrangian density is now veri-
fied by showing that the Euler-Lagrange equation (3) gen-
erates the correct equations of motion. Substituting (4)
into (3) one obtains

8 dy
—h, (x)=—=0. (6)
dt E 7o

By integrating this equation from x = — € to x = € and
taking the limit as € -0 one obtains at x = 0

a0} o ) _

a + Ky(t) — Fol 0, N
where y(¢) =p(0,¢). The quantity o[dy(x,t) /dx], _ o+ can
be recognized as the y component of the force exerted by
the string on the harmonic oscillator’s mass.' Equation (7)
can thus be recognized as Newton’s equation of motion for
the mass. For x >0 Eq. (6) reduces to

a2 d?
por -2

ot Ix
which is immediately recognized as the wave equation for
the string, a massless scaler Klein—-Gordon equation.
Hence, the Lagrangian density (4) generates the correct

classical equations of motion. The propagation velocity for
waves governed by the Eq. (8) is given by

+hy (x)p

=0, (8)

v=(a/p)'"? (9)
and the wave impedance is
T=o/v=(po)'*. (10)

It has been shown in Ref. 1 that by breaking the field
y(x,t) into a part y,, and a part y_,, propagating toward
and away from the oscillator, respectively,

Y =y, (%+t)+you.(—%+t). (11)

Equation (7) can be put into the form

d y dy dy in
4+ T =+Ky=2I —/,
Mgz thgth=1
which is the equation of motion for a damped driven har-
monic oscillator with a damping coefficient I". If the string
is of infinite length and no waves are propagating toward
the oscillator, the oscillator’s motion will decay exponen-
tially.

Having verified that the physical system under consider-
ation gives rise to damped harmonic motion, the momen-
tum 7 (x,f) canonically conjugate to the field y(x,z) will
now be determined. The momentum conjugate to y(x,¢) is

(12)
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obtained from the Lagrangian via
4.7
Mdy(x,1)1/8t}
Substituting (4) into (13) one finds
m(x,t) = [6(xX)M + h, (x) p][dy(x,£)]/t . (14)
The Hamiltonian density 57 is given by
X =m(x,){[dy(x,t)]/dt} - ., (15)
which when using (14) and (4) becomes

M\ K
oo () 457
(x)2 E +2y

m(x,t) = (13)

N | o (dy\?
nol8 Q) +5(5)] e
+ +(X)[2 a) "7 \ax) | (1)
The Hamiltonian
H= J dxz¥ (17)

can then be written as

M dy(x’t) )2 K 2
H=A(EDN R a0,
2( a ) T

k@b o
+L[28t+2 ax) | (18

The first two terms are recognized as the energy of the
oscillator located at x = 0. The integral is recognized as the
energy in the string.

The Lagrangian, the Hamiltonian, and the momentum
canonically conjugate to the field y(x, ¢) have now been
constructed.

III. NORMAL MODES

Here the normal modes for an harmonic oscillator
whose mass is coupled to a string of finite length / are ob-
tained. The results of this section will be very useful when
quantizing this system since quantization consists essen-
tially of constructing the creation and annihilation opera-
tors for these modes. For convenience the boundary condi-
tion

y(Lt)=0 (19)

will be chosen for the far end of the string. The normal
modes will consist of standing waves on the string. Hence,
the normal modes will have the form

—iw,t

Ya(xt) =y, (x)e , (20)
where
yJﬂ=quCtx+&). 21)

That (20) together with (21) satisfy the wave equation (8)
can be verified directly by substitution. The complex conju-
gate of (20) is also a normal mode of the system. Equations
(20) and (21) must also satisfy (7) which can be regarded
as a boundary condition'' for one end of the string. Substi-
tuting (20) and (21) into (7) one obtains '

(—wZM+K)sing, —Tw, cosf, =0. (22)

This can be regarded as an equation for 8, and can be reex-
pressed as ,
2 2
a) —
6, = cot“‘(—j‘z_—o n ) ,
r @

(23)

n
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where

172
(5 =

is the natural resonant frequency of the harmonic oscilla-
tor. To build an intuition about 8, consider a string of suffi-
cient length that the lowest mode has a frequency much less
than @, From (23) one sees that as @, —0 one has
6, —cot™'( ) = 0. Hence, for frequencies much less than
the oscillator’s resonant frequency there is no phase shift,
that is, the oscillator does not respond at low frequencies
and hence acts like the boundary condition y(0, z) = 0. As
o, — @y one has 8, —cot™'(0) = 7/2. Hence, modes close
to the oscillator’s resonant frequency suffer a 7/2 phase
shift, that is, the oscillator responds strongly near its reso-
nant frequency and hence acts like the boundary condition

O _q
at

As w, - o one has 6, »cot™'( — «) = 7. At high fre-
quencies the oscillator can no longer respond, a 7 phase
shift is equivalent to the boundary condition y(0,¢) = 0.

The eigenfrequencies of the normal modes are now de-
termined by the boundary condition (19). Hence, one re-
quires y, (/) =0, or

o, = Wwhnr—-206,). (25)

For a string with the boundary conditions y(0,#) = 0 and
y([,t) = 0 the modes are spaced according to

w, = (v/Dnm. (26)

Hence, from (25) and the discussion of the behavior of 6,,,
one sees that 8, has the effect of introducing an extra mode
into the normal mode spectrum when compared with (26).
This is depicted in Fig. 2. This extra mode is of course that
associated with the degree of freedom belonging to the har-
monic oscillator.

The orthogonality relations satisfied by these normal

-——

||

Wo

—
—

0

Fig. 2. A comparison of the normal modes of a string rigidly terminated at
both ends (left side of diagram ) with the normal modes of the same string
when one end is terminated by an harmonic oscillator with a natural
oscillation frequency w, (right side of diagram). The harmonic oscillator
inserts an extra mode, its own mode, in the normal mode spectrum.
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modes will now be derived. To this end we first evaluate

1
f Va (X)y, (x)dx
0

!
—a,a, J sin(“’"x +9,,)sin (“’""‘ +9,,,)dx. 27)
0 v v

When n = n’ the integral on the right-hand side is readily
evaluated. The result is

1
J Ya(X)p, (x)dx
0
. o,
|, g, vino%+o) o8
=a — )
2 1) 1)

n n

The case when n#n’ is less straightforward. Solving (25)
for 6, and substituting this into Eq. (27) one obtains

7
J- yn (x)yn' (x)dx
0

’ fl . (wn(x_l) )
=a,a, | sl ——4 nr
o v

X sin (?—1&:—1)- + n'ﬂ)dx . (29)
v

Making use of the relation
sin(a + nw) = (— 1)'sina (30)

and performing the change of variables n = x — / the inte-
gral is put into standard form and when evaluated gives

]
j Y (X)y, (x)dx
0

=(—1"*"a,a, ~
. I . ]
sin(w, —w, )- sin(w, + o, )-
X 2 2] (31)
@, — 0, 0, + o,

By substituting Eq. (26) into this equation to eliminate the
w,, one can show, using standard trigonometric identities
and Eq. (22), that Eq. (31) reduces to

[
fy,, X))y, (x)dx = —a,a, E?—Sin 6,sind, . (32)
(4]

If one chooses the normalization constant a, such that
“=TTTT ;
(& + sin 6, + M sin? e,,)
2 4o,
then from Eq. (28) and (32) one can show that the y, (x)
satisfy the orthogonality relation'?

» (33)

1
f [M8(x) + ph . (6) 19, (X)p (X) =8, . (34)

Having obtained the normal modes and their orthogonality
relation one is now ready for quantization.

IV. QUANTIZATION

Quantization of the oscillator coupled to a string of finite
length is readily accomplished in the Heisenberg picture
following the usual prescription for canonical quantiza-
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tion. First, the equations of motion, Eqgs. (6)—(8), are the
correct Heisenberg equations of motion provided y(x, ¢) is
regarded as an operator. Since the equations are linear one
does not have to normal order the operators in these equa-
tions. Canonical quantization requires that y(x, ¢) and its
canonically conjugate momentum 7(x, ¢) satisfy the equal
time Boson commutation relations:

xHpyx'0] = [rxt),m(x',t)] =0 (35)
and
[y(x,0),m(x't)] =ifib(x —x') . (36)

The operator y(x, ) can be expanded in terms of the
normal modes p, (x,t):

y(xyt) = i ’mi [yn (X,t)An +y:‘(x,t)AI] .
n=1 n
(37)

Using the orthogonality relation (34) one can derive ex-
pressions for the 4, in terms of y(x, ¢):

. !
a, =1 f dx[M8(x) + ph. ()]
[P, )

t 3
ayg,t) _ ayn(;:"” yan |, 68

A similar expression can be obtained for 4 .
From the commutation relations Eq. (35) and (36) and
the expression for the conjugate momentum (13) one can

show that 4, and 4 satisfy the usual commutation rela-
tions for Boson creation and annihilation operators:

[4,4,]=[4].4}]1=0, (39)
[A,,,AI,] =68, - (40)
From (16) and (17) the Hamiltonian is

! M(y\* K
i ado[(3) +57]
f_wx ) 2 \o¢ +2y

rols@ ()]
+ (x)[2 at +2 ax “4b

By substituting (37) into (41) one can express H in terms
of A, and 4 . To simplify the algebra it is useful to rewrite
(41) in a somewhat different form. By integrating the term
(0/2) (dy/0x)? in equation (41) by parts using the bound-
ary condition equation (19) and making use of Eq. (6) the
Hamiltonian can be put into the form

!
ay)2 82y]
H= HE(x )M+ h =} —p—].
J_wdxi[ (x)M + +(x)p][(at y 512
(42)

Now, the orthogonality relation (34) can readily be ap-
plied and H reduces to

X [y;"(x,t)

H= 3 #w,4}4,, (43)

n=1

where, as is usually done, the zero point energy has been
thrown away.? From (40) and (43) itis evident that the 4,
and 4 | are ladder operators for the Hamiltonian. Canoni-
cal quantization is completed by postulating the existence
of a vacuum state |0) satisfying

(0[0y =1 (44)
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and
A,]0) =0 for all n. (45)

Any state of the system can be constructed by applying a
suitable polynomial in the operators 4| to the vacuum
state.

V. THE GROUND STATE POSITION
PROBABILITY DISTRIBUTION

In this section the ground state position probability dis-
tribution for the damped harmonic oscillator will be evalu-
ated. It will be shown that the ground state position prob-
ability distribution will become narrower or more localized
as the damping constant I is increased.

The ground state position probability distribution will be
obtained by evaluating the moments

©Op*(x,0)[0) , (46)

where X is an integer. To simplify the analysis it is useful to
decompose y(x,t) into its positive and negative frequency
components y' ) (x,t) and 3!~ (x,t), respectively,

yxt) =y +y T (x0) (47)
where
P =3 Pa (D)4, 0, (48)
n=1 n
Y=Y d y. ()4t e (49)
n=1 260,,
Y (x,t) satisfies the property
yP(x,0[0) =0. (50)
¥+ and y' ) satisfy the commutation relations
DD Ox0] = 3 =T 32 (x) (51)
n=1 n
and furthermore
DDy @En]= 3 2. (52)
n=1 20),,
From (50) one can immediately show that
(Oly(x,2)[0) =0 (53)
and from (52) one can show
Ol = 3 L. (54)
Hence,
(Ay)*=(0}y*(x,1)|0) — (O|y(x,2)|0)?
=3 . (55)
n=1 0,

In order to compute the higher order moments of y(x,?) it
is worth noting that if the commutator C = [4,B] of two
operators 4 and B is a complex number, then

[A"B]=nCA4"—". (56)

Keeping this and equation (52) in mind and using (50)
one has

1137 Am. J. Phys., Vol. 54, No. 12, December 1986

(Oly*(x,1)|0)
= (0* ~ 1(x,0)y " (x,1)|0)
= O 2=l (k=D S :
n=14,

Using the relationship with Eq. (53) and (54) one can
show inductively that

V2(x). (57)

O *+1(x,1)]0) =0 (58)
and
(0|y2"(x,t)|0) = (2n — DHN(Ay)*". (59)

From the moments Eq. (58) and Eq. (59) one can deduce
that the probability distribution P(y) of finding the oscilla-
tor’s mass at position y is a Gaussian'? of the form

1 ¥ )
P(y) = (—— 4 , (60)
=y P\
where
=3 Ly, (61)
n=1 n

Hence, the ground state probability distribution for the
harmonic oscillator coupled to a string is a Gaussian.

The quantity Ay will now be evaluated for the case when
- w, that is, when one takes the thermodynamic limit. In
this limit the harmonic oscillator becomes a truly damped
harmonic oscillator, since the energy it radiates along the
string never returns to the oscillator.

From Eq. (21) and (33) one has

® sin? 6,
A= 3 22 — .
n=t ('%+E;—sin26,, +Msin20,,)

(62)

From Eq. (22) one can show

. 2 —_ 1

sin* 8, = " (M)2 (a)g e )2 (63)

T @,
and from (25) one has
Aov=w,, , —w,=WDrT+6,—-6,,,). (64)

With Eq. (63) and Eq. (64) one can show that in the limit
{— o the sum (62) reduces to the integral

/I do
A 2=_j , .
(&) ol Jo w[l+(M)2(a)f,—a)2)2]
r ®

The integral can be put into standard form with the change
of variables

(65)

2
- w? —2w0 ' (66)
@y
Then
A (7 d
=" 1+§-5Q2§2’ (67)
where
0= (M/T)a, (68)

is the quality factor for the damped harmonic oscillator.
Upon evaluation, the integral (67) gives

Bernard Yurke 1137



(__# Q cot"(————zQz_l)
MK 3071 VA07 -1
#
2 _
(Ay)* = MK

(69)

L 2n/MK 1407

The three cases Q> 1, Q = 1, and Q < correspond, respec-
tively, to the underdamped, critically damped, and over-
damped harmonic oscillator. Equations (69) have been in-
dependently derived by the author®!® and by Caldeira and
Leggett.'* As the quality factor Q— o the probability dis-
tribution should become that of the undamped harmonic
oscillator. In fact in the limit Q- « equation (69) gives

anr=()"
amMr)

which is the textbook result for the undamped harmonic
oscillator. For finite Q, Ay is smaller than that for the un-
damped case [compare Eq. (70) with (69) for Q =}, for
example] and approaches O as Q goes to 0. This shrinking
of the ground state position probability distribution has
observable consequences in the tunneling rates of Joseph-
son junctions.'®*

Having evaluated (Ay)? and determined the ground
state probability distribution P(y) for the position of the
damped harmonic oscillator’s mass, one might next try to
evaluate (Ap)? for the harmonic oscillator’s momentum:

dy(0,t)
=M=
P ot

Substituting (47) into this equation and following the pro-
cedure that led to (65) one obtains

(70)

(71)

wdw

. M% r’
T I T
r @

(72)

gK

Fig. 3. An harmonic oscillator in which the string is connected to the mass
via a stiff spring K. At high frequencies this spring decouples the mass
from the string.
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1 Q 1og(l—zczH»Jﬂ(‘F) o<
1-207—{T-407 i

I

At high frequencies the integrand goes as 1/w, hence this
integral has a logarithmic untraviolet divergence. This di-
vergence is due to the response of the harmonic oscillator to
the zero point fluctuations in the high frequency modes of
the string.

For real physical systems, a lumped circuit description
will break down at high frequencies due to various non-
idealities. A real spring is not massless, but has a finite mass
distributed over its length. Also the mass of a real oscillator
will not reside in a rigid object, but an object that will flex a
small amount as the string tugs on it. Such nonidealities
can be expected to introduce high frequency cutoffs in the
integral (72). As an example, one might simulate the non-
rigidity of the object in which the mass resides with the
lumped component model depicted in Fig. 3. The stiff
spring K between the string and the lumped component
mass simulates the nonrigidity of the object in which the
mass resides. For this system equation (72) becomes

M?*#%
(apy =22
2 ol
1
XJ; K Ma);iw 2 w(z)_wz 2"
o) T @ (220)
( +Ks © Ks) + r @

(73)

In the limit K — oo this reduces to (72). But for finite K,
for frequencies above

o, = JK./M , (74)

the integrand goes as 1/@> and the integral is finite. Thus,
the spring K, decouples the oscillator from the string at
frequencies above the cutoff frequency w, .

VL. CONCLUSIONS

A conservative model of a damped harmonic oscillator
in which the dissipative element is modeled by a string of
infinite extent has been quantized using the standard tech-
niques of canonical quantization. Since the Heisenberg
equations of motion are linear operator equations, the cal-
culations are straightforward to carry out. The system pre-
sented here can be used to illustrate various aspects of the
quantum mechanics of a particle interacting with a field. It
was shown that for the oscillator of Fig. 1 the ground state
position probability distribution becomes narrower as
damping is increased. The second moment of the momen-
tum distribution has a logarithmic ultraviolet divergence.
It was pointed out that this divergence can be eliminated by
coupling the string to the mass via a spring as in Fig. 3. This
spring decouples the mass from the string at high frequen-
cies and hence provides a high frequency cut off.
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On the distribution of the nearest neighbor
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The classical derivation of the distance distribution function of the nearest neighbor is discussed,
and its limitations outlined. A new derivation, more general, is presented and applied to a random

distribution of particles in a sphere.

L. INTRODUCTION

The approximation to consider, only, the interaction
between a particle and its nearest neighbor is sometimes
made in many-particle systems. For example, this has been
done in electronic energy transfer'” and stellar dynamics.>
Using the distance distribution function of the nearest
neighbor (DFN) the mean distance between the particles
can also be obtained (Appendix A).

The classical DFN* is valid whenever two conditions are
fulfilled: (i) uniform distribution of the particles and (ii)
mean distance between particles much smaller than the di-
mensions of the volume containing the particles.

A case where the first condition is not met is that of a
liquid: its molecules are crowded, and therefore the volume
occupied by each molecule must be taken into account.
Besides this excluded volume effect, a short range order ex-
ists. Both effects are mathematically expressed by the well-
known radial distribution function, g(7).° This function is
defined as the ratio of the actual number density (number
of particles per unit volume) at distance 7 from the particle,
n(r), to the bulk number density, »,

g(r) =n(r)/n. (n

Two typical cases are shown in Fig. 1: in Fig. 1(a) the
radial distribution function of a monoatomic liquid and in
Fig. 1(b) the radial distribution of a dilute monoatomic
gas. In both cases 7 is the center-to-center distance. The
probability of two molecules having a very small separation
is low because of the repulsive forces (“excluded vol-
ume”). Several progressively decreasing peaks occur in
g(7) of the liquid, reflecting a sort of multilayer disposition
of the molecules around the central molecule. Only for
large distances is the distribution uniform, with g(r) = 1.

In order to have a mean distance between particles simi-
lar to the dimensions of the vessel, it is clear that the parti-
cles can only be a few, say, less than one thousand. But this
is really a very small number. Does it have any physical
meaning? The answer is yes, and systems with this pecu-
liarity are not unknown. They may be called compartmen-
talized systems. Examples are gases in porous media and
molecules dissolved in micelles. In both cases a large num-
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ber of molecules is distributed by an equally large number
of compartments. In this way, each compartment contains
only a few molecules.

It is the purpose of this paper to derive DFN’s for the two
above-mentioned cases, where the classical DFN is not val-
id. For the sake of completeness, we start with the deriva-
tion of the classical DFN.

II. CLASSICAL DISTRIBUTION

Consider a large volume ¥, containing N particles, N3 1.
The number density is then n = N/V. Let w(r) be the
sought-for distribution function of the nearest neighbor. If
we choose a particle at random, and define a sphere of radi-
us 7 centered in that particle, and if the particles are uni-
formly distributed, the probability for a particle to occur
inside the sphere is simply v/V, where v = 477°/3.

Since the particles are considered dimensionless, they
can occur in any number (up to N) interior to 7. Then the
probability of having K particles in the sphere (plus the
central particle) is given by the binomial law

(- e

The probability that no particles occur interior to 7 is of
course P(0), but is also equal to one minus the probability
that the nearest neighbor occurs between zero and 7, that s,

J' (ndr=(1-2)" 3
— rdr={1—=—].
pnar=(1-3) @
By taking the limit N— o, while fixing n = N /¥, we get
- J w(r)dr = exp ( - 47:”) (4)
thus
w(r) = 4nr’n exp ( — 4wr’n/3). 5

Now it is clear that the derivation of the classical DFN
involves two assumptions, as referred in the introduction:
(i) uniform distribution of particles, that is, dimensionless
and noninteracting entities and (ii) infinite volume, valid
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