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derived from the average velocities associated with 1845
and 1855. The westward acceleration tabulated for 1850
means that the average westward velocity was greater in
the decade 1850-1860 than it had been in the decade 1840
1850. Could this be a reflection of the California gold rush
of 1849? The answer is ‘“yes.” A population of 92 597 was
recorded for California at the census date of 1 June 1850,
even though California was not admitted as a state until 9
September 1850. At the census date of 1 June 1860, the
population of California was 379 994.2 This quadrupling of
California’s population would contribute to the large west-
ward velocity during the 1860’s, which is seen as a reduced
magnitude of v(x) for 1865 and as positive a(x) for 1860. The
large westward acceleration (1940) for the period 1930-
1950 probably reflects the effects of the rapid industrial
development of the Pacific coast states during World War
I1, 1940-1950. The 1970 acceleration may reflect the
growth of the high-technology industries in the west and
southwest. The EW accelerations seem to alternate in sign
while the EW velocities are always to the west. This would
suggest some form of oscillation superimposed on the west-
ward velocity. It would be interesting to see if a mechanism
could be identified that was driving the oscillation.

The recent NS accelerations show only one interruption
(1960) in an almost continuous acceleration of our popula-
tion to the “sun belt” for several decades. This may be
driven by people’s desire to escape from the northern
winters. The advent of central air conditioning could have
been a factor in the large southward acceleration associated
with 1950 while the civil rights turmoil may have been a

factor in the reduction in the southward velocity associated
with 1960. Unfortunately the data are coarse and do not
permit fine-grained analysis.

X. CONCLUSION

We often see physics experiments where students in the
laboratory study the record of position marks made in
equal time intervals by a body moving with constant accel-
eration. The students then use first and second differences
to determine the average velocities and acceleration of the
body as a function of time. Here is an example from an area
outside of physics which uses these concepts plus the addi-
tional concepts of center-of-mass and of changing mass.
This example could be the subject of a laboratory-type ex-
ercise. Students could be given three or more consecutive
lines of the demographic data of Table II and could be
asked to use them to calculate the values of interesting
physical parameters that characterize our dynamic popu-
lation.

"The tonne is the SI unit of mass equal to 1000 kg.

2“Superdigitation” is “the increasingly common practice of presenting
numerical engineering data with many more digits than are warranted by
the intrinsic certainty of the data.” Epsilonics (Measurements Group,
Inc., Raleigh, NC, 1982), p. 11.

3The World Almanac and Book of Facts (Newspaper Enterprise Assoc.,
Inc., New York, 1983.) This source gives population data for each state
each time the state was included in the census, pp. 208-209.
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The problem of the one-dimensional hydrogen atom has evoked interest because of its relevance to
the behavior of hydrogeniclike atoms in the presence of strong magnetic fields and of hydrogenic
impurities confined in quantum-well wire structures. The binding energy of the one-dimensional
nonrelativistic hydrogen atom has been found to be infinite in its ground state. We have solved the
relativistic hydrogen atom problem for the one-dimensional case using the Klein—-Gordon
equation. We find that the binding energy in the ground state for the one-dimensional relativistic
hydrogen atom is finite and is of order of the rest mass energy of the electron. Therefore a
relativistic treatment removes the infinite binding energy found for the ground state for the one-

dimensional nonrelativistic hydrogen atom.

L INTRODUCTION

The hydrogen-atom problem has always excited interest
because of its relevance to understanding the behavior of
one-electron atoms, hydrogenic impurities in semiconduc-
tors, positronium, and Wannier excitons in solids. The
Schrodinger equation for the hydrogen atom has been
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solved in one,! two? and three® dimensions. The interest in
the three-dimensional solution is obvious because of its rel-
evance to the problem of the real hydrogen atom. In this
case, the interaction between the negative and positive
charges in the atom are via an attractive Coulomb poten-
tial. The solutions of the hydrogen-atom problem in one
and two dimensions have become of interest because of the
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problem of electrons which are spatially confined to move
in one or two dimensions.'*~” With the recent development
of molecular beam epitaxy (MBE) techniques,®'° there has
been a growing interest in quantum-well structures in
which the electrons are confined to move in two dimen-
sions. This confinement of the electrons implies that if one
is interested in the binding energies of hydrogenic impuri-
ties'!~1% or excitons'®!” in these structures, one must solve
the hydrogen-atom problem for a quasi-two-dimensional
system. The interest in the solution of the hydrogen-atom
problem in one dimension arises because of the problem of
excitons in semiconductors in the presence of strong mag-
netic fields.* More recently there has been a growing inter-
est in the problem of the hydrogen atom in the presence of
the intense magnetic fields which can occur under astro-
physical conditions, such as, for example, in the vicinity of
a pulsar.>® Under these conditions the motion of the elec-
tron-hole pair in the exciton or the electron in the hydrogen
atom is spatially confined by the strong magnetic fields.
Loudon' solved the problem of the nonrelativistic one-
dimensional hydrogen atom because of his interest in the
behavior of excitons in semiconductors in the presence of
strong magnetic fields.* Because he was interested in a situ-
ation where the bound electron-hole pair was spatially con-
fined by the high magnetic field rather than a true one-
dimensional hydrogen atom, he. assumed that the
electron-hole pair interacted via an attractive Coulomb po-
tential which fell off inversely as the distance between the
electron-hole pair. He found that each of the states of the
one-dimensional hydrogen atom was doubly degenerate
except for the ground state. For the ground state, he found
that the binding energy was infinite and that the probabil-
ity density arising from the ground-state wave function was
a delta function localizing the electron at the origin of the
attractive Coulomb potential. Andrews'® has questioned
the existence of this ground state of the one-dimensional
hydrogen atom. However, Haines and Roberts'® have
shown that it does exist by investigating the solutions of the
truncated Coulomb potential for the one-dimensional hy-
drogen atom. They also claimed that contrary to Loudon’s
conclusions, the energy spectrum of the one-dimensional
hydrogen atom is not degenerate and that the solutions
having even parity have a continuous energy spectrum.
Gomes and Zimerman?® have also studied the bound-state
solutions of the one-dimensional hydrogen atom and ques-
tioned the validity of the even parity solutions proposed by
Haines and Roberts.'® However, none of the arguments
proposed by these authors has eliminated the existence of
the infinity binding energy of the nonrelativistic one-di-
mensional hydrogen atom with a ground-state wave func-
tion of even parity. Interest in the one-dimensional hydro-
gen-atom problem has been revived by the fabrication of
quantum-well wire structures in which the carriers are con-
fined to move in one dimension,?! i.¢., along the axis of the
wire. Because of the fabrication of these quasi-one-dimen-
sional structures, interest has arisen in the binding energy
of hydrogenic impurities and excitons in these systems.’
The existence of the infinity binding energy for the
ground state of the nonrelativistic one-dimensional hydro-
gen atom is a troubling feature. For systems in which the
binding energy is greater than the rest mass energies of the
particles in the systems, relativistic effects should be impor-
tant. Therefore in this paper we solve the problem of the
relativistic one-dimensional hydrogen atom to see whether
the binding energy of the ground state is effected by taking
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relativistic effects into account. Lapidus® has considered
the problem of the relativistic hydrogen atom but in his
treatment he has taken the interaction potential to be a
delta function rather than the one-dimensional Coulomb
potential used by Loudon® and others."®*?° This is in agree-
ment with the approach he has taken in modeling the inter-
action potential in his treatment of the nonrelativistic one-
dimensional nonrelativistic hydrogen atom.?* However, it
is not consistent with the case in which the Coulomb poten-
tial is three dimensional but the electron is confined to
move in only one dimension®* To find the eigenstates and
eigenvalues for our relativistic one-dimensional hydrogen-
atom problem, we solve the Klein-Gordon equation using
an attractive Coulomb potential in one dimiension. This
approach would be valid for an electron without spin. To
take spin effects into account, one would have to solve an
analogous problem using the Dirac equation. However,
since we are mainly interested in how in ground-state bind-
ing energy is effected by taking relativistic effects into ac-
count, we will solve the problem of the relativistic one-
dimensional hydrogen atom using the Klein—-Gordon
equation rather than the Dirac equation.

IL. SOLUTION

The relativistic Schrodinger equation for the one-dimen-

sional hydrogen atom is
2 2 2,4

dW+ 1 {E2+ZZeE+Ze

dx® | #c2\ x| x?
where Ze is the charge of the nucleus. This is the relativistic
wave equation for a charged particle without spin, so this
treatment using the Klein—-Gordon equation will neglect
any relativistic correlations to the energy of the one-dimen-
sional hydrogen atom which arise because of the spin of the
electron. The solution of Eq. (1) for the regions x <0 and
x> 0is straightforward. However, because of the singular-
ity of the Coulomb potential at x = 0, it is not immediately
obvious how the solution in the two regions should be
joined at the origin. The wave function is continuous at the
origin but its derivative with respect to x at the origin need
not be continuous because of the singularity of the potential
at that point. This point has been treated at some length for
the nonrelativistic case by Loudon’ and others.!>?° There
is general agreement that there are solutions of odd parity
which are continuous at the origin and whose first deriva-
tive is also continuous at the origin. There is some disagree-
ment between the vatious authors on whether thereis also a
solution having even parity at the origin and if such a solu-
tion exists, whether or not it is degenerate in energy with
the odd-parity solution. Some of the same questions arise as
well in the relativistic case.

Introducing the dimensionless variables

p=2ex, a=e/fic),
€=(hc)—1(m2c4_E2)1/2’ /1=ZaE(m2c4_E2)_1/2
and using the ansatz

—m2c“)!I/=O, (1)

¥ (p)=p" f(plexp — (p/2), (2)
we obtain the following equation for f( p):
Pf"+QR2S—plf' +A~S)f=0, (3)

where S'=1/2+1/2(1—4Z%?. For bound states,
E < mc?,so that € is real. This is the equation for the conflu-
ent hypergeometric function which has the general solu-
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tions*>2%

flp)=cF(S—A25p)+c,F(1 —S—42-—2Sp)p' %,
(4)

where ¢, and ¢, are arbitrary constants. For the wave func-
tion to remain finite at the x = + o, the power series
expansion for the confluent hypergeometric function must
terminate after a finite number of terms? yielding a finite
polynominal in p for f( p). If the power series expansion for
the confluent hypergeometric function does not terminate,
the wave function ¢ will diverge at x = + 0. The power
series expansion will only terminate if A = n + .5 for the
first solution in Eq. (4) or if A =n + 1 — S for the second
solution in Eq. (4). Note that S has two values, 1/2 + 1/
2(1 —4Z%a?% and n =0,1,2,--. For our case, these two
solutions are not linearly independent since the first solu-
tion for the smaller value of S is identical to the second
solution for the larger value of S and vice versa. Therefore
we can in complete generality set ¢, = 0 in Eq. (4) as the
first solution for the two values of S gives us our two linear-
ly independent solutions, of the different equation given in
Eq. (3). When we set A = n + S, we get the following result
for the energy of the relativistic one-dimensional hydrogen
atom:
2.2 172
E= mcy(l + —Z—i—) (5)
(n+S)

The solution to the wave equation given by Eqs. (2)—(4) is
valid in the region where x > 0. In the region x <0, we get
the same form of the solution if we make the change of
variables ¢ = — p. Therefore the solution for the wave
function of the relativistic, (1D) hydrogen atom which is
finite at both the originand atx = + oo is

—p/2)F(—n28p) forx>0 (6a)

Y(p) = a,p® expl
and
¥ p) = as{ — pIF explp/2F (— 1,25, —p) forx <0,
(6b)

where p = 2Zx/ay[(n + S + Za*]"/? with a, = #*/me*
thie Bohr radius for the hydrogen atom. Here a, and a, are
constants which are determined by the normalization of
the wave function and the boundary conditions at the ori-
gin. For states of even parity a, = a,, while for the state of
odd parity a, = — a,.

In the limit Za <1, which in the three-dimensional case
corresponds to the nonrelativistic limit, the energies and
wave function for the ground and excited states of the 1D
hydrogen atom reduce to

E=mc*2Za —1Z°a) n=0, (7a)
2.2 4 .4
E= mcz[l _Za ﬂ_(}_ - 2)] n=12234.
2n* 2n* \4n
(7b)
l 1/2
o) = (=) expl — x|/aay) n=0, (8a)
aa

o
J

(n|x|1)=< 2Z° ) f dx x* exp J——(

aadniin + 1)
4
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2|/2 a s .
=— (?,72—3,2—) g3t - 1) 2g —n —2),

= () e S22

na,
XL ’1,(_2_ZJ_’£|_) n=12734,, (8b)
na,

where we have kept corrections to the energy to order
Z “a*, which are the lowest-order correlations to the nonre-
lat1v1stlc energies of the 1D hydrogen atom. Here L 7(x) are
the associated Laguerre polynomials,”’ and A, = (fi/mc) is
the Compton wavelength of the electron. We see that in this
limit, the ground-state energy of the 1D hydrogen atom is
to lowest order in Za much smaller than the rest mass
energy of the electron but that it is positive and finite. The
excited-state energies and wave function in this limit are
the same as those for the excited states (#> 1) of the nonrela-
tivistic 1D hydrogen atom up to terms Z2 a”>.  Therefore,
when Za <1, only the ground-state energy is significantly
modified from the nonrelativistic results when relativistic
correlations are taken into account. If we define the bind-
ing energy of the atom as the difference between the relativ-
istic energy and the rest mass energy, E = E, + mc?, the
binding energy of the relativistic 1D hydrogen atom in this
limit is of order — mc?. The fact that the total relativistic
energy is positive in the ground state means that the 1D
hydrogen atom is stable against the spontaneous creation
of electron-positron pairs. This would not have been the
case if the binding energy in the relativistic case had been
greater than twice the rest mass energy of the electron. We
also note that in the ground state of the 1D hydrogen atom
the electron is only localized to a distance of a Compton
wavelength to the origin of the Coulomb potential. In the
nonrelativistic case, the electron was completely localized
around the origin in the ground state with a delta function
probability density. It is this difference in the amount of
localization of the electron around the origin in the ground
state which explains the difference between the finite bind-
ing energy predicted by our relativistic treatment and the
infinite binding energy predicted by the nonrelativistic
treatment. Finally, for the excited states, the relativistic
energies for the 1D hydrogen atom are identical to those for
the s states (/ = 0) for the 3D hydrogen atom using the
Klein-Gordon equation.?® The main difference between
the 1D and 3D hydrogen atoms is the occurrence of the
strongly bound ground state for the 1D case.

An additional point of interest involves the probabilities
for transitions from the strongly bound ground state to the
excited states of the 1D hydrogen atom. Because the excit-
ed state wave function vanish near the origin of the Cou-
lomb potential while the ground-state wave function, even
in the relativistic case, is strongly localized near the origin,
we expect that the transitions probabilities from the ground
to the excited states will be extremely small. As an illustra-
tion, we will present a calculation here of the matrix ele-
ment for the transition between the ground state and an
excited state of odd parity using the electric dipole approxi-
mation. (In this approximation, the matrix elements for
transitions to even parity excited states, if they exist, would
vanish identically.) The electric dipole matrix element in
this case is

(2

na,
()
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where we have used the integral

J- dttre—th;(t)= F(r+n+ 1)(q— 1)
o n!qr+n+l

n(l Z
) 0
from Gradshteyn and Ryzhik.” To obtain Eq. (9), we par-
tially differentiate Eq. (10) with respect to ¢. Since the
Compton wavelength of the electron, A, = aa,, is much
smaller than the Bohr radius, the matrix element given by
Eq. (9) is very small for the 1D hydrogen atom where
Z=1.

’

I11. DISCUSSION

In this paper, we have solved the one-dimensional rela-
tivistic Schrodinger equation for a charged particle without
spin confined to move in at attractive Coulomb potential.
For the excited states of the system, we find that in view of
the small value of the fine-structure constant @ = (1/137),
that for the hydrogen where Z = 1, the energy eigenvalues
and eigenfunctions do not differ significantly from those
obtained in the nonrelativistic treatment. In addition,
when the relativistic corrections are important, they are the
same for the excited states as they are for the s states of the
3D hydrogen atom. However, for the ground state, the re-
sults of the relativistic treatment differ significantly from
those obtained using the nonrelativistic treatment. The
nonrelativistic treatment yields an infinite binding energy
in the ground state of the 1D hydrogen atom with a delta-
function probability density. The relativistic treatment, on
the other hand, predicts a finite binding energy of order of
the rest mass energy of the electron and a probability den-
sity which falls off exponentially with distance from the
origin with a characteristic decay length of order of the
Compton wavelength of the electron. It is due to the fact
that the relativistic treatment provides a characteristic
length, i.e., the Compton wavelength for the localization of
the electron in the ground state, that the binding energy of
the 1D hydrogen atom is finite. Such characteristic lengths
also occur in other problems in which the electron in a
hydrogenic atom is confined in a quasi-one-dimensional
system, either by the application of strong magnetic
fields*® or the confinement in a quasi-one-dimensional
quantum wire structure.’

The results obtained here apply strictly to an electron
without spin since we have solved the Klein-Gordon equa-
tion, which is valid for a particle without spin, instead of
the Dirac equation which does take the spin of the electron
into account. However, since our main motivation was to
investigate the binding energy of the 1D hydrogen atom in
its ground state, the use of the Klein~Gordon equation is
justified in predicting the limiting energy of the 1D hydro-
gen atom in the ground state. Moreover, since the nonrela-
tivistic treatments of the 1D hydrogen atom did not take
electron spin into account, we can directly compare our
results in the limit Zar €1 and see that except for the ground
state, the energies and wave functions reduce to those ob-
tained in the nonrelativistic treatment in this limit. A rela-
tivistic treatment of the 1D hydrogen atom has been given
using the Dirac equation,?? but a comparison with our re-
sults is made difficult because a delta-function potential
was used instead of an attractive Coulomb potential for the
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interaction between the positive and negative charges in the
hydrogen atom. We would expect that the use of the Dirac
equation for the 1D hydrogen atom would lead to differ-
ences from our results only in terms of order Z *a* because
of the contribution of terms involving the electron spin to
the fine-structure corrections which occur relativistically.
Finally, we expect that the transition probabilities between
the ground and excited states of the 1D hydrogen atom will
be extremely small because of the localization of the elec-
tron in the ground state in a region in which the excited-
state wave function are negligible. However, in the relativ-
istic treatment, these transition probabilities although
small would be finite, unlike the nonrelativistic treatment
where these transition probabilities would vanish identical-
ly because of the delta-function nature of the ground-state
probability density.

ACKNOWLEDGMENT

The authors wish to acknowledge Walter Bloss for rais-
ing this interesting problem.

® Permanent address: Department of Physics, Illinois Institute of Tech-
nology, Chicago, IL 60616.

'R. Loudon, Am. J. Phys. 27, 649 (1959).

2W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).

3L. I Schiff, Quantum Mechanics (McGraw-Hill, New York, 1955), 2nd
ed., pp. 30-35.

“R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196 (1960).

SH. Friedrich, Phys. Rev. A 26, 1827 (1982).

5G. Wunner and H. Ruder, Astron. Astrophys. 89, 241 (1980).

"J. Lee and H. N. Spector, J. Vac. Sci. Technol. B 2, 16 (1984).

SL. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

°R. Dingle, in Festkorperprobleme (Advances in Solid State Physics), edit-
ed by H. J. Quiessner (Pergamon, Braunschweig, 1975), Vol. 15, p. 21.

191, L. Chang and L. Esaki, in Molecular Beam Epitaxy, edited by B. R.
Pamplin (Pergamon, Oxford, 1980), p. 3.

!1G. Bastard, Phys. Rev. B 24, 4717 (1981).

12G3, Bastard, Surf. Sci. 113, 165 (1982).

13C. Mailhiot, Y. Chang, and T. C. McGill, Phys. Rev. B 26, 4449 (1982).

14C. Mailhiot, Y. Chang, and T. C. McGill, J. Vac. Sci. Technol. 21, 519
(1982).

133, Chaudhuri, Phys. Rev. B 28, 4480 (1983); ibid. 30, 3338 (1984).

16G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B 26,
1974 (1982).

17Y. Shinozuk and M. Matsuura, Phys. Rev. B 28, 4878 (1983).

'SM. Andrews, Am. J. Phys. 34, 1194 (1966).

!9L. K. Haines and D. H. Roberts, Am. J. Phys. 37, 1145 (1969).

20). F. Gomes and A. H. Zimmerman, Am. J. Phys. 48, 579 (1980).

2IP. H. Petroff, A. C. Gossard, R. A. Logan, and W. Wiegman, Appl.
Phys. Lett. 41, 635 (1982).

21, R. Lapidus, Am. J. Phys. 51, 1036 (1983).

1. R. Lapidus, Am. J. Phys. 37, 930 (1969); 37, 1064 (1969); 38, 905
(1970); 42, 316 (1974); 43, 790 (1975); 46, 1281 (1978); 50, 453 (1982); 50,
562 (1982); 49, 807 (1981); 50, 563 (1982); 50, 663 (1982); P. B. James,
ibid. 38, 1319 (1970).

G, Q. Hassouni, Am. J. Phys. 49, 143 (1981); 50, 105 (1982).

P. M. Morse and H. Feshbash, Methods of Theoretical Physics
{McGraw-Hill, New York, 1953}, pp. 551-555, 604-615.

%G, Arfken, Mathematical Methods for Physicists (Academic, New York,
1966), pp. S00-503.

¥"Reference 26, pp. 486-488.

Z8Reference 3, p. 332.

1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Pro-
ducts (Academic, New York, 1965), p. 845.

H. N. Spector and J. Lee 251



