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Man-made quantum wells: A new perspective on the finite square-well
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The observation of man-made quantum size effects is now possible due to advances in
semiconductor technology. Interest in quantum-well heterostructures and superlattices has
added a new dimension to both the application and perspective of the traditional discussion of a
particle in a box. This paper addresses these new perspectives and presents in an elementary
manner the techniques employed to model single and multiple square wells in semiconductors. A
brief overview of semiconductor microlayer devices is followed by a discussion of the physics of
quantum-well heterostructures. Since the behavior of these structures is described by the finite
square well, a simple iterative technique to solve for the bound states of single or multiple (coupled)
square wells is presented. The iterative technique is quite general and powerful, yet the physical
ideas and the mathematics are straightforward and simple. Finally, computer simulation is
employed to illustrate the interaction between multiple coupled wells; the results are compared
with those obtained via the usual Kronig—Penney model.

L. INTRODUCTION

Until recently examples of the quantum-mechanical par-
ticle in a box have been limited to naturally occurring sys-
tems such as alpha-particle emission from heavy nuclei,’
the Ramsauer-Townsend effect,? or in recent times ul-
trathin conducting channels in field-effect transistors.> Ad-
vances in controlling the epitaxial growth of semiconduc-
tor heterostructures have made possible the observation of
man-made quantum size effects in optical devices. By care-
ful control of III-V crystal growth processes researchers
have been able to fabricate a variety of high performance
optoelectronic and electronic devices involving confined-
particle (quantum) effects. These devices add a new dimen-
sion to the traditional view of the classic problem of a parti-
cle in a box and its application in studying quantum-well
heterostructure devices. The purpose of this paper is to
introduce the subject of quantum-well heterostructures
and to present in an elementary manner the techniques em-
ployed to model these structures via single and multiple
square wells. The iterative numerical technique presented
(and the solution of bound-state energies) is based on pre-
vious work but is considerably more general and yet still is
simple.

This paper is organized into five sections. In this section
an introduction to ultrathin-layer {quantum-well) semicon-
ductor devices is given. Section II presents background in-
formation on the modeling of quantum-well heterostruc-
tures. In Sec. III a simple iterative technique to determine
the bound-state energies and wave functions of single and
multiple finite square wells is presented. In Sec. IV we illus-
trate the formation of minibands for a large number of
identical coupled wells and compare the exact solutions to
the Kronig—Penney model. Each section is relatively self-
contained so that readers interested primarily in the
square-well solutions can proceed directly to Sec. IIL

The evolution of semiconductor crystal growth has ad-
vanced to the stage where “artificial” materials can be
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created in the form of ultrathin layers of narrow-band gap
adjacent to layers of wideband gap. The optical and electri-
cal properties of these new materials can be quite different
from those of bulk crystals. Quantum effects play a very
explicit role in determining the new properties.*’

A layer of gallium arsenide (GaAs) less than 200 A thick
sandwiched (epitaxially, i.e., the atoms in registry) between
two aluminum gallium arsenide (Al, Ga, _, As) confining
layers is an example of the type of artificial structure that
has been grown in recent years. This sandwiched structure,
an Al Ga, _,As—GaAs quantum-well heterostructure
(QWH), creates a conduction band (and valence band) po-
tential well, and consequently a set of discrete energy levels
can be observed for electrons confined in the thin GaAs
layer. If several alternating layers of Al, Ga,_,As and
GaAs are grown, then a multiple quantum-well hetero-
structure can be fabricated. If the number of adjacent wells
is very large, the structure is called a superlattice (SL). It is
an interesting question: How many coupled wells form a
SL? As we shall see later, the answer is not many—maybe
less than ten.

Interest in quantum-well heterostructures and superlat-
tices has increased dramatically because of various funda-
mental properties and the fact that a variety of novel (and
useful) optoelectronic and electronic devices are possible
based on QWH designs.** One of the most important
aspects of QWH’s and SL’s is that their unique properties
can be “engineered” by controlling the layer thickness,
crystal or alloy composition, or doping. To understand
how this control is achieved it is necessary to understand
the quantum ideas governing these structures. For the case
of quantum wells and superlattices in which the layer
thicknesses and composition are varied, the QWH or SL
problem can be modeled as a particle-in-a-box or a finite
square-well potential. (If the crystal doping is varied or if
charge transfer occurs from one layer to another, then the
potential is no longer a square well and is not considered in
this paper.) The challenge in modeling quantum-well heter-
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ostructures arises from the large variety of these structures
that can be fabricated. The simplest structure is a single
finite square well. However, desirable device geometries
can include multiple square wells of different well widths
and barrier heights. The determination of the bound-state
energies of such a complicated system is actually quite easy
if some straightforward iterative techniques are applied.

II. QUANTUM-WELL HETEROSTRUCTURES

The physical system of interest here consists of a narrow-
band-gap thin layer of GaAs (L, <200 A) sandwiched
(epitaxially) between two wider-band-gap Al Ga, _ , As
layers as shown in Fig. 1. (The crystal composition x can
vary between O and 1. As the composition x is increased the
band gap (E,) of the Al, Ga, _, As increases.®) The differ-
ence in band gap AE, = E, (AlGaAs) — E,(GaAs) pro-
duces an attractive potential well to electrons in the con-
duction band (4E, =0.854E,) and an attractive
potential well to holes in the valence band
(AE, =0.154E,)" as shown in Fig. 2. (A brief review of
solid-state physics terminology is given in the Appendix.)

If an electron from the conduction band of a bulk piece of
GaAs recombines with a hole in the valance band, then the
energy of the emitted photon is given by
E, = E,(GaAs) = fiw. A similar transition (a confined-
particle transition) in a GaAs quantum well results in a
photon of energy E, = E,(GaAs) + E° + E ), where E
is the nth bound-state electron energy in the conduction
band and E® is the mth bound-state hole energy in the
valance band. That is, the photon released has an energy
equal to the sum of the bulk band-gap energy plus the
bound-state energies of the electron and hole as shown in
Fig. 2. The most probable optical transitions occur when
n = m since n# m transitions involve wave functions (elec-
trons and holes) which are nearly orthogonal. The lumines-

()]
Al,Ga,.As AlGa,,As
GaAs
(b}
\'s
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Fig. 1. Schematic representation of an Al Ga,_,As—GaAs—
Al ,Ga, _,As quantum-well heterostructure. (a) An ultrathin

(L, =200 A) narrow-band-gap GaAs active layer is sandwiched between
two thick wider-gap Al, Ga, _, As layers. (b) Electrons (and holes) are
trapped in the thin GaAs layer by a finite square-well potential.
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AE, = 85% AE,
I |

Eoron = Eg (GaAs) + E® + E%

E; (AlGaAs) E, (GaAs)
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Fig. 2. Square-well potential characteristic of an Al, Ga, _ , As—GaAs—
Al Ga, _ , As quantum-well heterostructure. For well thicknesses L,
<A (the carrier de Broglie wavelength) size quantization occurs and re-
sults in a series of discrete energy levels given by the bound-state energies
of a finite square well. An attractive potential well occurs in both the
conduction band and the valence band, giving rise to a series of bound
electron states E °, and bound hole states E*°. In the valence band there
are bound heavy-hole states and bound light-hole states. (Light-hole states
not shown.)

cence spectrum, or optical emission spectrum, from a
quantum well should contain a series of emission lines cor-
responding to the bound-state energies of the potential
well. Spectra of this form are indeed observed as shown in
Fig. 3. The various positions of the electron-to-heavy-hole
(e—hh; dark markers, n) and electron-to-light-hole (e—lh;
light markers, n’) recombination transitions for the experi-
mental sample are shown on the horizontal axis of Fig. 3.
Note that light is emitted (actually stimulated emission) in
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Fig. 3. Stimulated emission (77 K) on confined-particle states of an
Al Ga, _,As-GaAs-Al Ga, _,As (x = 0.6) quantum-well heterostruc-
ture grown by metalorganic chemical vapor deposition. The calculated
energies of the confined particle recombination transitions (L, = 235 A)
are indicated on the horizontal axis by heavy (e—hh, #) and light (e—1h,
n') markers. Notice that laser operation occurs on well-defined, confined-
particle transitions as far as the n = 5 state or 265 meV above the bulk-
crystal GaAs band edge (E, ). The experimental samples [of lateral width
(a) 15 um, (b) 31 um, and (c) 26 z2m)] are photopumped (5X 10* W/cm?,
Ar™ laser) at various positions on the flat sides of the samples. The fine
structure is due to the Fabry—Perot modes of the laser cavity.
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Fig. 4. Electron energies as a function of layer thickness L, for a thin
GaAs layer sandwiched between two Al, Ga, _ , As (x = 0.35) confining
or barrier layers. The depth of the well for the electrons is 371 meV. The
hole energies for the same sample are shown in Fig. 5.

well-defined groups of modes near the calculated transition
energies. The fine structure which occurs at each quantum
state is due to the Fabry-Perot modes of the laser cavity. A
detailed description of Fig. 3 and other single/multiple
quantum-well laser spectra can be found in Ref 8. In this
case the effects of size quantization are quite dramatic and
easy to observe. Laser operation hundreds of milli-elec-
tron-volts above the GaAs band edge (visible red light from
GaAs) is unique to quantum-well heterostructures and
forms the basis of many important experiments.

The bound-state electron energies (£ °) and bound-state
hole energies (E)) for an Al ,Ga,_,As-
GaAs-Al, Ga, _, As (x = 0.35) quantum well as a func-
tion of well width L, are shown in Figs. 4 and 5, respective-
ly. The room-temperature band gaps of GaAs and
Al ,sGa, s As are 1.424 and 1.860 eV, respectively.® The
resulting potential wells in the conduction band and va-
lence band are 0.371 and 0.065 V. (The curves of Figs. 4
and 5 take into account the difference in effective mass
between the GaAs and Al, Ga, _, As.) Note the rapid in-

250

welt width L, (R)

Fig. 5. Heavy- and light-hole (dotted) energies as a function of layer thick-
ness L, for a GaAs quantum well with Al, Ga, _, As (x = 0.35) confining
or barrier layers. The depth of the well for holes is 65 meV. From Figs. 4
and 5 the optical transition energies are given by the electron energy +

band-gap energy + hole energy, for a specific well width L,.
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crease in E® (and E}?) as the well width L, is decreased.
Note also that each plot terminates at 0.371 eV (or 0.065
eV), which corresponds to the potential well depth. From
curves such as these it is possible to calculate the optical
transition energies E,(GaAs) + E’ + E°. In the remain-
der of this section the techniques used to calculate the elec-
tron and hole bound-state energies are presented. (An in-
teresting exercise for those who are already familiar with
square wells is to explain the origin of the slight downturn
of each curve for energies approaching the well depth V)

We now consider in greater detail the physics of quan-
tum-well heterostructures. Electrons (and holes) trapped in
the thin GaAs layer can be considered to be confined in a
three-dimensional finite potential well where L, <L, ,L,. If
the spacial dimensions are large (e.g.,-L, and L, ), then the
allowed energies form a continuum and E = #°k*/2m,
where k can take on many closely spaced values. If one of
the spacial dimensions is small (e.g., L, < carrier de Broglie
wavelength), then quantization of the particle motion oc-
curs and E = #°k 2/2m, where k, is determined by the so-
lutions to the finite square-well problem. The potential in
the z direction is shown in Fig. 2.

The formal method of describing the electrons (or holes)
in the thin GaAs layer is to write down the appropriate
Hamiltonian. Since L, <L,,L, for the QWH of interest
here (Figs. 1 and 2}, to a first approximation the following
separation can be made:

Htot =ny +sz (1)

where H,, is the single-particle Hamiltonian for a two-
dimensional electron gas and H, is the Hamiltonian for a
one-dimensional finite square well. Regardless of our
knowledge of Hamiltonian operators, the basic idea is that
our three-dimensional system can be conveniently split
into a two-dimensional system plus a one-dimensional sys-
tem. By virtue of the *“well-behaved” mathematical charac-
ter of our Hamilitonian operator and the allowed wave
functions, the energy of an electron (or a hole) in the thin
GaAs layer is given by the sum of the energies associated
with H, and H,,. These are

#k?
2

2
Ek ok k) = —= + 2 4 k2 @)
2m

or

2
E(k k) =E, + 2 (k2 +k2), 3)
2m

where E, = #°k 2/2m is the nth bound state of the poten-
tial well. The virtue of this analysis is that a rather over-
whelming physical system is reduced to the solution of two
relatively simple problems. The first problem is that of a
one-dimensional square well, as we have been suggesting
all along. The second problem requires a knowledge of the
band structure of GaAs. Band-structure information is
readily obtained from previous work (e.g., band-gap ener-
gy, electron effective mass, etc.).®

The dispersion relations (3) describe the electron or hole
energies by one discrete quantum number » (k, discrete)
and two continuous quantum numbers k, and k,. Many of
the unique properties of QWH can be understood by the
appropriate inspection/manipulation of Eq. (3). For each
confined particle state £, thereis a continuum of k, and k,
values allowed (called a subband). Each subband is dis-
placed from the band edge by an amount E, which corre-
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Fig. 6. Plot of increasing electron energy and increasing hole energy
{downward) as a function of the density of states for a QWH. The staircase
density of states is characteristic of the two-dimensional nature of a quan-
tum well. The smooth parabolic curves correspond to the bulk-crystal
density of states. Interband optical transitions (4n = 0 selection rule as-
sumed) occur from a bound state in the conduction band E ¢ to a bound
state in the valence band E ° with n = m. Electron transitions can occur
to both light- and heavy-hole valence-band states. The energy of the emit-
ted quanta is given by fiw = E,(GaAs) + £ + E . (Note that the hole
degeneracy of light and heavy holes of bulk GaAs is removed by the small
size L, <A.)

sponds to the bound-state (one-dimensional) energies of a
finite potential well.

The form of the dispersion relation also determines the
form of the density of states function g(E ) (number of al-
lowed states/energy interval). A comparison between the
density of states for a thick sample (parabola) and QWH
(staircase) is shown in Fig. 6. Since many optical and elec-
trical properties depend on g(E ) and d [g(E )]/dE the stair-
case form of g(E) for quantum wells gives rise to unique
materials and device characteristics® not observed in thick
samples.

The origin of the selection rule EX—EY, n=m
(An = 0) for interband transitions (see Fig. 3 and 4) arises
from the near orthogonality of the electron and hole wave
functions. This is not, however, a strict selection rule.’

In summary, we have divided the study of quantum-well
heterostructures into two parts to simplify the analysis.
The two parts consist of a two-dimensional electron gas
with continuous energy states and a one-dimensional
square well with discrete bound states. For additional ex-
perimental information on quantum-well heterostructures
see Refs. 4, 5, and 7-9.

III. NUMERICAL SOLUTION OF MULTIPLE
SQUARE WELLS

The bound-state energies of the one-dimensional finite
square well are given by the solution of the time-indepen-
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dent Schrodinger equation Hy = E. For the square well
of depth ¥ and well width L, = 24, the Schrodinger equa-
tion is given by

—# d*
=EY,
2m dZ?
for —a<z<a, ¥(z) =4 sin(az) + B coslaz) (4)
and
—# d*¥
V¥ =EY,
2m d7* +

for z< —a, ¥(z) = Cé*; for z>a, ¥(z) = De~#,(5)
where
a=(mE/#)\2, B=(2m(V—E )/ (6)

These results, of course, appear in many introductory
quantum mechanics textbooks. Continuity of the wave
function ¥(z) and the first derivative 9’(z) at the two well
boundaries results in two transcendental equations

atan (@a) = F (symmetric states), (7a)

acot(ea) = — B (antisymmetric states). (7b)

The solutions to these equations can be determined by
graphical'®'* or numerical techniques.'*~!

Methods for dealing with multiwell systems " are less
plentiful and considerably more complex. The evaluation
of multiple-quantum-well heterostructures involves many
finite square wells of different well widths and barrier
heights as shown in Fig. 7. In addition, the particle mass
can be a function of the bound-state energy or can change
as a function of barrier height. The iterative technique pre-
sented below can accommodate all of these variations with-
out complicating the basic approach.

The bound-state energies (eigenvalues) and wave func-
tions (eigenvectors) of a system of NV coupled wells can be
determined by realizing that the resulting wave functions
must be well behaved. By “well behaved” we mean that the
wave function must be normalizable or, in other words, the
wave function must decay exponentially in the semi-infi-
nite (wide-gap) confining layers sandwiching the quantum
wells on either side. For simplicity consider a single square
well and assume for the moment that the energy E in Eqgs.
(4), (5), and (6) is an adjustable parameter. If we guess a
value of E which corresponds to one of the bound states,
say E = E|, then the corresponding wave function is well
behaved as shown in Fig. 8. If we guess an energy E which
is a little too large or too small then the wave function does
not tend to zero asymptotically beyond the wells but di-

19,20

MULTIPLE WELLS

N = M/2 Coupled Wells

M+1 = Number of Distinct Regions
Zm = Coordinates of the M Interfaces
Vm = Potential in the mth Region

km = Wavevector on the mth Region

Fig. 7. Multiple finite square wells used as a model to determine the
bound-state energies and wave functions by a numerical procedure.
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E<E,

Fig. 8. Ground-state wave function of a finite potential well for the case
where the energy E is equal to, less than, and greater than the bound-state
energy E, = 38.418 meV. Note that a correct “guess” of the energy
E = E, produces a well-behaved wave function ({#|¢) finite). If too small
of an energy (£ = 37 meV) or too large of an energy (E = 40 meV) is
guessed or selected, the wave function diverges to plus or minus infinity.

verges to plus or minus infinity as shown in Fig. 8. Thus,
the bound-state energies can be determined by finding
those energies for which the wave function is well behaved.
Plotting the wave function to determine its behavior for
many values of E is impractical. However, there are very
simple numerical techniques which can provide the re-
quired information.

In order to determine the behavior of the wave function
as a function of the parameter E, consider the expressions
for 3(z).

¥; = A; coslk;z) + B; sin(k;z), E>V,
(8)
¥;(z) = 4, explk;z) + B; exp( — k;z), E<V,
where
k; =(Q2m;E /#)"?, E>V
(9)
k;=@2m,(V—E)/#)'?, E<V.

The index j corresponds to the M different regions (layers).
For the case of a single finite well, the appropriate expres-
sions for the wave functions in each region are given in Fig.
9. Note that for the choice of z, = 0 as shown, that B, and
A, must equal zero or ¢ diverges to positive or negative
infinity. The coefficients 4; and B, are actually a function
of the energy parameter E. If we set A, =1 and B, =0,
then the desired values of E (the E, ’s) are determined by

Aoekol A, = o

Bge’%’-

A,cos (k, 2)
+
By = B;sin (k; 2)

Z Z,

Fig. 9. Analytical expressions for the wave function in the well region and
the confining layers of a QWH. Since the wave function must decay ex-
ponentially in the confining layers, then the coefficients B, and 4, must be
zero.
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finding the roots of 4,(E ). Thus the problem of solving for
the bound-state energies E, has been reduced to the prob-
lem of finding the roots of A,(E ) = 0. The coefficient 4, will
be referred to as the coefficient of the unbounded exponen-
tial term. )

To compute the roots of 4,(E)=0 an expression for
A,(E ) is required. First we compute 4,(E ) for a single well
and then extend the analysis to N wells. Continuity of ¥(z)
and ¢'(z) at each well boundary leads to the expression (see
Fig. 9),

( exp(kozo) exp( — koZo) )(/;o)
ko explkozo)  — ko exp( — kozZo) o
_ ( cos(k o) sin{kz,) ) (;,) (10a)
— k, sin(k,z,) K, cos(k,z,)/ \B,/’
at the left boundary z, and
( cos(k,z,) sin(k,z,) ) (2,)
— k, sin(k,z,) k, cos(k,z,) 1
_ ( exp(k,z,) exp( — kyz)) ) (1;2) (10b)
k, explk,z,)  — ky exp( — kyz,) '

at the right-hand boundary z,. Thus if we set 4, =1 and
B, = 0 (required for well-behaved ¢ for z < 0), then A,(E ) is
easily calculated with Eqgs. (10a) and (10b). When
A,(E) =0, then E is one of the bound-state energies E,, .

The procedure presented here appears at first quite cum-
bersome compared to other numerical techniques designed
to calculate the bound-state energies of a finite square well.
If one considers only a single well, then this approach is
much too general and powerful. The power and simplicity
of this technique is best appreciated by considering the gen-
eral case of N coupled wells of varying well widths and
depths as shown in Fig. 7. For the case of N wells the con-
tinuity of ¢(z) and ¢’(z) at each well boundary leads to 2N
equations of the form

A; A,

M(B) =M+(B*) (11)

where

. explk,z,,)
M, = (kj explk;z,,) — k; exp( — k;z,,)

expl ~ k;2,,)

) forE<V,

and
g ( cos(k;z,,) sin(k;z,, )
77\ —k; sin(k;z,,)  k; cos(k,z,,)

The coordinates z,, are the positions of the 2N layer inter-
faces, and j is an index for each of the 2N + 1 (or M + 1)
distinct regions as shown in Fig. 7. With the initial condi-
tions A, = 1 and B, = 0 it is possible to compute 4, and B;
from the expression

(I temenm1)(50) - (’;z) (13)

for a set of wave vectors k;. Since the k;’s and E are related
by equations (9), then the solution to the system of equa-
tions (11) has been reduced to finding those values of E for
which 4,, =0.

A plot of the coefficient 4, as a function of E for N =1,
2, 3, and 4 wells is shown in Fig. 10. In this case the well
width is 120 A; the potential depth is 0.106 eV; the spacing
between wells is 50 A. For N = 1 (one well) the roots of
A,(E) = 0 occur at approximately 20 and 70 meV, which

) for E>V. (12)
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Fig. 10. Plot of the magnitude of 4 , ; (the unbounded exponential term) as
a function of energy for the case of N = 1,2,3, and 4 wells. A bound state
occurs whenever the curve crosses the horizontal energy axis. For the case
of one well the two crossings represent the » = 1 and » = 2 energy levels.
For the case of N = 2 wells, the four crossings correspond to the symmet-
ric and antisymmetric states of the first two energy levels. As the number
of coupled wells increases the number of zero crossings increases simulta-
neously. These plots have been made for the electron states of 120-A
GaAs wells coupled by 50-A Al, Ga, _, As (x = 0.1) barriers.

correspond to the # =1 and n =2 bound states. If two
wells are coupled (N = 2 in Fig. 10), then 4,(E ) crosses the
horizontal axis twice in the region of 20 meV and twice in
the region of 70 meV. The double crossings correspond to
the symmetric and antisymmetric (bonding, antibonding)
states of the interacting wells. If a third or fourth well is
added, then the multiplicity of crossings near the original
n =1 and n = 2 levels increases accordingly as shown in
Fig. 10. (Note that energy splitting of the n =2 level is
much greater than the n = 1 level.)

The technique presented above is valid for any series of
square steps and regions for which Egs. (8), (9), and (11) and
(12) are applicable (e.g., a staircase potential, etc.). Regard-
less of the number of wells the procedure remains the same.
Multiwell structures simply require a series of matrix mul-
tiplications to compute A, (E ). The magnitude and sign of
A,y (E) varies as E is varied, so that it is possible to design
an iterative technique to solve for the roots of 4, (E) = 0.
For example, if A,5(E) times A,y(E + AE) is negative,
then at least one root is located between E and E + AE.
After a root is isolated it can be identified (i.e., level num-
ber, symmetry, etc.) by constructing the wave function
from the computed coefficients (4;’s and B;’s) and by
counting the number of nodes. This statement is true even
for complex multiwell systems and is a consequence of the
fact that the kinetic energy is proportional to the curvature
of the wave function. Accurate plots of each bound state
wave function are readily obtained from Egs. (8), (9) and the
computed coefficients. A sketch of the wave function can
be obtained by applying the rules given in Ref. 21.

The procedure outlined here is sufficiently general that
multiple wells of variable well widths and depths are easily
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accommodated. In addition, an energy-dependent particle
mass or a change in mass from layer to layer is easily han-
dled.

IV. MULTIPLE QUANTUM WELLS, SUPER
LATTICES, AND KRONIG-PENNEY ANALYSIS

The problem of N (N large) interacting wells spaced at
equal distances is, of course, well known.??>?* The outcome
of this classic analysis (Kronig and Penney)*?*? is that each
of the single-well levels is split into N closely spaced levels.
These closely spaced levels form a nearly continuous band.
This type of model has been used traditionally to determine
the electron (and hole) energies in solids where the potential
has the same period as the atomic lattice. For example, the
fundamental band structure (E-k diagram)ofbulk GaAs or
Al,Ga, _, As can be determined using this type of model.
The energy difference between each band and the energy
width of each band depends on the strength of the interac-
tion between each well.

We know that if we couple enough Al, Ga, _ , As—GaAs
quantum wells (with layer thicknesses greater than 10-20
A) the problem can be approximated by the Kronig-Pen-
ney model. We have already asked and now answer the
following question: How many wells are required before
the width of the minibands approaches the Kronig-Penney
limit? To answer this_question we consider 40-A GaAs
wells separated by 40-A Al _Ga, _, As barriers with a bar-
rier height of 200 meV (19% Al). The n = 1 electron ener-
gies for ¥ coupled wells (V = 1 to 18) are shown in Fig. 11.
The bandwidth as calculated using the Kronig-Penney
model is also shown in Fig. 11. Note that the exact solu-
tions rapidly approach the bandwidth predicted by the
Kronig-Penney model. In this case only a few (approxi-
mately 6 to 10) quantum wells are required before the
Kronig-Penney model is applicable. If the interaction
between the wells were reduced by increasing the barrier
heights or the distance between wells, then additional wells
would be required to achieve the same effect.

How many Al Ga, _ , As—GaAs quantum wells are re-
quired to form a superlattice? How many Ga and As atoms
are required to form the band structure of GaAs? Both of
these questions can be considered (zeroth-order approxi-
mation) with the techniques presented here. The answers to
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Fig. 11. Electron energy states (n = 1) for N coupled wells as a function of
the number of identical wells. Note that the width of the “band” rapidly
approaches the Kronig-Penney approximation.
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these questions depend on the strength of the interaction
between the coupled wells. In both cases the interaction is
similar to that shown in Fig. 11. Only a few monolayers of
Gaand As are required to form GaAs. (The lattice constant
of GaAs is 5.6532 A.) Thus the discussion in Sec. II on
GaAs quantum wells is applicable for well widths greater
than a few monolayers.

V. CONCLUSIONS

Recent advances in the fabrication of thin semiconduc-
tor layers have added a new dimension to both the applica-
tion and perspective of the traditional discussion of a parti-
cle in a box. Quantum notions play a very explicit role in
determining the properties of these ultrathin layered struc-
tures. Quantum-well heterostructures of Al,Ga, _, As—
GaAs are especially interesting, not only as unique optoe-

lectronic device structures, but as an explicit example of a.

man-made, particle-in-a-box “laboratory.”

In Secs. I and IT we have presented an introduction and
background information on the ideas needed for the ele-
mentary (or approximate) modeling of quantum-well he-
terostructures. Since the finite square well is central to the
evaluation of the behavior of quantum wells, it is discussed
in detail in Sec. III. A simple iterative technique to calcu-
late the bound-state energies and wave functions of single
and multiple finite square wells is presented. Nonperiodic
multiwell systems are easily evaluated by a series of matrix
multiplications. In Sec. IV, we have illustrated the forma-
tion of minibands for a large number of identical coupled
wells and have compared the exact solutions to the
Kronig—Penney model.
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APPENDIX

A brief review of solid-state physics terminology is pre-
sented. When many atoms are brought together to form a
solid, energy bands (essentially continuous bands of ener-
gy} evolve from the atomic levels. The highest energy band
filled with electrons is called the valence band (VB). The
next higher band (empty) is called the conduction band
(CB). The “forbidden band” (no allowed energy states)

between the valence band and conduction band is called the
band gap. The energy separation between the valence and
conduction bands is called the band gap energy (E,). When
an electron is promoted from the VB to the CB the empty
region left in the VB s called a hole. The concept of a hole is
convenient since we can concentrate on the motion of one
vacant site rather than the motion of all the electrons re-
maining in the VB. When an external force is applied to the
electrons (or holes) they do not respond as free particles due
to the influence of the other atoms. The “effective mass”
(m*) allows us to relate the particle motion to an external
force (or potential) without worrying about all the atomic
forces. For example, an electron in the CB of GaAs re-
sponds as if its mass is 0.0665m,, (m, = electron mass). A
hole in the VB of GaAs can respond as if its mass is 0.45m,
(heavy hole) or 0.08m, (light hole).®
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PROBLEM

A man whose eyes are at a height 4 above the floor level
and whose trousers’ length is /, stands in front of a trial
mirror. Show that he should stand at a distance of
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i[4 (A — 1)]*/from the mirror in order to get the best view of

his trousers. (Solution is on page 464.)
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